• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Structure of the Current Sheets in the Near-Mars Magnetotail Maven Observations

Solar System Research. 2017. Vol. 51. No. 5. P. 347-361.
Grigorenko E. E., Shuvalov S., Malova H., Popov V.Yu, Ermakov V., Dubinin E., Zelenyi L. M.

During the last 15 years, the Current Sheets (CSs) have been intensively studied in the tail of the terrestrial magnetosphere, where protons are the dominated ion component. On the contrary, in the Martian magnetotail heavy ions (O+ and ) usually dominate while the abundance of protons can be negligible. Hence it is interesting to study the spatial structure and plasma characteristics of such “oxygen” CSs. MAVEN spacecraft (s/c) currently operating on the Martian orbit with a unique set of scientific instruments allows observation of the magnetic field and three-dimensional distribution functions of various ion components and electrons with a high time resolution. In this paper, we analyse nine intervals of the CSs observed by MAVEN in the near-Mars tail at the distances from the planet ~1.5–1RM, where RM is the radius of Mars. We analyse the spatial structure of the CSs and estimate their thickness for different magnetic configurations and relative abundance of the heavy and light ions in the sheets. It is shown that, similarly to the CSs in the Earth’s magnetotail, the thickness and complexity of the spatial structure of the Maritan CSs (i.e. the presence of embedded and / or peripheral current structures) depend on the magnetic configuration of the sheets, which, in turn, affects the fraction of the quasi-adiabatic particles in the CSs