• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Many-body renormalization of Landau levels in graphene due to screened Coulomb interaction

Physical Review B: Condensed Matter and Materials Physics. 2018. Vol. 97. No. 07-5416. P. 1-8.
Alexey A. Sokolik, Yurii E. Lozovik.

Renormalization of Landau level energies in graphene in strong magnetic field due to Coulomb interaction is studied theoretically, and calculations are compared with two experiments on carrier-density dependent scanning tunneling spectroscopy. An approximate preservation of the square-root dependence of the energies of Landau levels on their numbers and magnetic field in the presence of the interaction is examined. Many-body calculations of the renormalized Fermi velocity with the statically screened interaction taken in the random-phase approximation show good agreement with both experiments. The crucial role of the screening in achieving quantitative agreement is found. The main contribution to the observed rapid logarithmic growth of the renormalized Fermi velocity on approach to the charge neutrality point turned out to be caused not by mere exchange interaction effects, but by weakening of the screening at decreasing carrier density. The importance of a self-consistent treatment of the screening is also demonstrated.