### Article

## Double-deck structure of the boundary layer in the problem of a compressible flow along a plate with small irregularities on the surface

We consider the problem of a viscous compressible subsonic fluid flow along a flat plate with small periodic irregularities on the surface for large Reynolds numbers. We obtain a formal asymptotic solution with double-deck structure of the boundary layer. We present the results of numerical simulation of flow in the thin boundary layer (i.e., in the near-boundary region).

We consider a non-stationary problem of an incompressible viscous fluid flow along surfaces with small irregularities for large Reynolds number, which have a formal asymptotic solution with a double-deck structure of the boundary layer.

We study the existence conditions for a double-deck structure of a boundary layer in typical problems of incompressible fluid flow along surfaces with small irregularities (periodic or localized) for large Reynolds number. We obtain characteristic scales (a power of a small parameter included in a solution) which lead to the double-deck structure, and we obtain a formal asymptotic solution of a problem of a flow inside an axially-symmetric pipe and a two-dimensional channel with small periodic irregularities on the wall. We prove that a quasistationary solution of a Rayleigh-type equation (which describes the flow oscillation on the “upper deck” of the boundary layer with the double-deck structure, i.e. in the classical Prandtl boundary layer) exists and is stable. We obtain a formal asymptotic solution with the double-deck structure for the problem of fluid flow along a plate with small localized irregularities such as hump, step or small angle. We construct a numerical solution algorithm for all equations which we obtained and we show the results of their applications.

Dynamics of Langmuir solitons is considered in plasmas with spatially inhomogeneous electron temperature. An underlying Zakharov-type system of two unidirectional equations for the Langmuir and ion-sound fields is reduced to an inhomogeneous nonlinear Schrödinger equation (NLSE) with spatial variation of the second-order dispersion (SOD) and self-phase modulation (SPM) coefficients, induced by the spatially inhomogeneous profile of electron temperature. Analytical trajectories of the motion of a soliton in the plasma with an electron-temperature hole, barrier, or cavity between two barriers are found, using the method of integral moments. The possibility of the soliton to pass a high-temperature barrier is shown too. Analytical results are well corroborated by numerical simulations.

A fluid flow along a semi-infinite plate with small periodic irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin boundary layer (“lower deck”) and a classical Prandtl boundary layer (“upper deck”). The aim of this paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation, which describes oscillations of the vertical velocity component in the classical boundary layer.

Full papers (articles) of 2nd Stochastic Modeling Techniques and Data Analysis (SMTDA-2012) International Conference are represented in the proceedings. This conference took place from 5 June by 8 June 2012 in Chania, Crete, Greece.