### Article

## The representation ring of the unitary groups and Markov processes of algebraic origin

The paper consists of two parts. The first part introduces the representation ring for the family of compact unitary groups U(1), U(2), .... This novel object is a commutative graded algebra R with infinite-dimensional homogeneous components. It plays the role of the algebra of symmetric functions, which serves as the representation ring for the family of finite symmetric groups. The purpose of the first part is to elaborate on the basic definitions and prepare the ground for the construction of the second part of the paper.

The second part deals with a family of Markov processes on the dual object to the infinite-dimensional unitary group U(∞). These processes were defined in a joint work with Alexei Borodin (2012) [5]. The main result of the present paper consists in the derivation of an explicit expression for their infinitesimal generators. It is shown that the generators are implemented by certain second order partial differential operators with countably many variables, initially defined as operators on R.

We discuss the construction of certain infinite-dimensional continuous time Markov processes, based on the use of intertwined Markov semigroups.

The Thoma cone is an infinite-dimensional locally compact space, which is closely related to the space of extremal characters of the infinite symmetric group. In another context, the Thoma cone appears as the set of parameters for totally positive, upper triangular Toeplitz matrices of infinite size.

The purpose of the paper is to construct a family of continuous time Markov processes on the Thoma cone, depending on two continuous parameters. Our construction largely exploits specific properties of the Thoma cone related to its representation-theoretic origin, although we do not use representations directly. On the other hand, we were inspired by analogies with random matrix theory coming from models of Markov dynamics related to orthogonal polynomial ensembles.

We show that our processes possess a number of nice properties, namely: (1) every process X is a Feller process; (2) the infinitesimal generator of X, its spectrum, and the eigenfunctions admit an explicit description; (3) in the equilibrium regime, the finite-dimensional distributions of X can be interpreted as (the laws of) infinite-particle systems with determinantal correlations; (4) the corresponding time-dependent correlation kernel admits an explicit expression, and its structure is similar to that of time-dependent correlation kernels appearing in random matrix theory.

We study asymptotics of traces of (noncommutative) monomials formed by images of certain elements of the universal enveloping algebra of the infinite-dimensional unitary group in its Plancherel representations. We prove that they converge to (commutative) moments of a Gaussian process that can be viewed as a collection of simply yet nontrivially correlated two-dimensional Gaussian Free Fields. The limiting process has previously arisen via the global scaling limit of spectra for submatrices of Wigner Hermitian random matrices.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.