### Article

## Asymptotic Properties of Local Sampling on Manifold

In many applications, the real high-dimensional data occupy only a very small part in the high dimensional ‘observation space’ whose intrinsic dimension is small. The most popular model of such data is Manifold model which assumes that the data lie on or near an unknown manifold Data Manifold, (DM) of lower dimensionality embedded in an ambient high-dimensional input space (Manifold assumption about high-dimensional data). Manifold Learning is a Dimensionality Reduction problem under the Manifold assumption about the processed data and its goal is to construct a low-di-mensional parameterization of the DM (global low-dimensional coordinates on the DM) from a finite dataset sampled from the DM. Manifold assumption means that local neighborhood of each manifold point is equivalent to an area of low-dimensional Euclidean space. Because of this, most of Manifold Learning algorithms include two parts: ‘local part’ in which certain characteristics reflecting low-dimensional local structure of neighborhoods of all sample points are constructed and ‘global part’ in which global low-dimensional coordinates on the DM are constructed by solving certain convex optimization problem for specific cost function depending on the local characteristics. Statistical properties of ‘local part’ are closely connected with local sampling on the manifold, which is considered in the study.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

In this paper we prove that the spatially homogeneous Landau equation for Maxwellian molecules can be represented through the product of two elementary stochastic processes. The first one is the Brownian motion on the group of rotations. The second one is, conditionally on the first one, a Gaussian process. Using this representation, we establish sharp multi-scale upper and lower bounds for the transition density of the Landau equation, the multi-scale structure depending on the shape of the support of the initial condition. © 2015, University of Washington. All rights reserved.

One of the ultimate goals of Manifold Learning (ML) is to reconstruct an unknown nonlinear low-dimensional Data Manifold (DM) embedded in a high-dimensional observation space from a given set of data points sampled from the manifold. We derive asymptotic expansion and local lower and upper bounds for the maximum reconstruction error in a small neighborhood of an arbitrary point. The expansion and bounds are defined in terms of the distance between tangent spaces to the original Data manifold and the Reconstructed Manifold (RM) at the selected point and its reconstructed value, respectively. We propose an amplification of the ML, called Tangent Bundle ML, in which proximity is required not only between the DM and RM but also between their tangent spaces. We present a new geometrically motivated Grassman&Stiefel Eigenmaps algorithm that solves this problem and gives a new solution for the ML also.

In many Data Analysis tasks, one deals with data that are presented in high-dimensional spaces. In practice original high-dimensional data are transformed into lower-dimensional representations (features) preserving certain subject-driven data properties such as distances or geodesic distances, angles, etc. Preserving as much as possible available information contained in the original high-dimensional data is also an important and desirable property of the representation. The real-world high-dimensional data typically lie on or near a certain unknown low-dimensional manifold (Data manifold) embedded in an ambient high-dimensional `observation' space, so in this article we assume this Manifold assumption to be fulfilled. An exact isometric manifold embedding in a low-dimensional space is possible in certain special cases only, so we consider the problem of constructing a `locally isometric and conformal' embedding, which preserves distances and angles between close points. We propose a new geometrically motivated locally isometric and conformal representation method, which employs Tangent Manifold Learning technique consisting in sample-based estimation of tangent spaces to the unknown Data manifold. In numerical experiments, the proposed method compares favourably with popular Manifold Learning methods in terms of isometric and conformal embedding properties as well as of accuracy of Data manifold reconstruction from the sample.

The paper extends a classical result on the convergence of the Krawtchouk polynomials to the Hermite polynomials. We provide a uniform asymptotic expansion in terms of Hermite polynomials and obtain explicit expressions for a few first terms of this expansion. The research is motivated by the study of ergodic sums of the Pascal adic transformation. Bibliography: 10 titles.

Let X be an unknown nonlinear smooth q-dimensional Data manifold (D-manifold) embedded in a p-dimensional space (p> q) covered by a single coordinate chart. It is assumed that the manifold's condition number is positive so X has no self-intersections. Let Xn={X1, X2,..., Xn}⊂ X⊂ Rp be a sample randomly selected from the D-manifold Xindependently of each other according to an unknown probability measure on X with strictly positive density.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.