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Abstract: In many applications, the real high-dimensional data occupy 

only a very small part in the high dimensional ‘observation space’ whose 

intrinsic dimension is small. The most popular model of such data is 

Manifold model which assumes that the data lie on or near an unknown 

manifold Data Manifold, (DM) of lower dimensionality embedded in an 

ambient high-dimensional input space (Manifold assumption about high-

dimensional data). Manifold Learning is a Dimensionality Reduction 

problem under the Manifold assumption about the processed data and its 

goal is to construct a low-di-mensional parameterization of the DM (global 

low-dimensional coordinates on the DM) from a finite dataset sampled 

from the DM. Manifold assumption means that local neighborhood of each 

manifold point is equivalent to an area of low-dimensional Euclidean space. 

Because of this, most of Manifold Learning algorithms include two parts: 

‘local part’ in which certain characteristics reflecting low-dimensional local 

structure of neighborhoods of all sample points are constructed and ‘global 

part’ in which global low-dimensional coordinates on the DM are 

constructed by solving certain convex optimization problem for specific 

cost function depending on the local characteristics. Statistical properties of 

‘local part’ are closely connected with local sampling on the manifold, 

which is considered in the study. 
 

Keywords: Manifold Learning, Asymptotic Expansions, Large Deviations 

 

Introduction 

Many Data Analysis tasks, such as Pattern 
Recognition, Classification, Clustering, Prognosis, 
Function reconstruction and others, which are 

challenging for machine learning problems, deal with 
real-world data that are presented in high-dimensional 
spaces and the ‘curse of dimensionality’ phenomena is 
often an obstacle to the use of many learning algorithms 
for solving these tasks. 

Fortunately, in many applications, especially in 

imaging and medical ones, the real high-dimensional 

data occupy only a very small part in the high 

dimensional ‘observation space’ p
ℝ  whose intrinsic 

dimension q is small (usually, ) q p≪ Donoho (2000; 

Verleysen, 2003). Thus, various Dimensionality 

Reduction (Feature extraction) algorithms whose goal 

is a finding of a low-dimensional parameterization of 

high-dimensional data can be used as a first key step in 

solutions of such ‘high-dimensional’ tasks by 

transforming the data into their low-dimensional 

representations (features) preserving certain chosen 

subject-driven data properties (Bengio et al., 2013; 

Bernstein and Kuleshov, 2014; Kuleshov and 

Bernstein, 2016. Then the low-dimensional features can 

be used in reduced learning procedures instead of initial 

high-dimensional vectors avoiding the curse of 

dimensionality Kuleshov and Bernstein (2014): 

‘dimensionality reduction may be necessary to discard 

redundancy and reduce the computational cost of 

further operations’ Lee and Verleysen (2007). 

The most popular model of high-dimensional data, 

which occupy a very small part of observation space 
p
ℝ , is Manifold model in accordance with which the 

data lie on or near an unknown manifold (Data 

manifold, DM) X  of lower dimensionality q<p 

embedded in an ambient high-dimensional input space 
p
ℝ  (Manifold assumption Seung and Lee (2000) 

about high-dimensional data); typically, this 

assumption is satisfied for ‘real-world’ high-

dimensional data obtained from ‘natural’ sources. In 

real examples, a manifold dimension q is usually 

unknown and can be estimated by a given dataset 

randomly sampled from the Data manifold Levina and 

Bickel (2005; Fan et al., 2009; Einbeck and 

Kalantana, 2013; Rozza et al., 2011). 
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Dimensionality Reduction under the Manifold 

assumption about the processed data is usually 

referred to as the Manifold Learning Smith et al. 

(2009; Ma and Fu, 2011) whose goal is constructing a 

low-dimensional parameterization of the DM (global 

low-dimensional coordinates on the DM) from a finite 

dataset sampled from the DM. 

Manifold assumption means that local neighborhood 

of each manifold point is equivalent to an area of low-

dimensional Euclidean space. Because of this, most of 

Manifold Learning algorithms include two parts: ‘local 

part’ in which certain characteristics reflecting low-

dimensional local structure of neighborhoods of all 

sample points are constructed and ‘global part’ in which 

global low-dimensional coordinates on the DM are 

constructed by solving certain convex optimization problem 

for specific cost function depending on the local 

characteristics under some normalization constraints 

(usually, generalized eigenvalues problem). It is typical 

structure of certain class of manifold learning algorithms 

such as Locally Linear Embedding (LLE) Roweis and Saul 

(2000), ISOmerric MAPping (Isomap) Tenenbaum et al. 

(2000), Laplacian Eigenmaps (LEM) Belkin and Niyogi 

(2003), Local Tangent Space Alignment (LTSA) 

Zhang and Zha (2004), Hessian Eigenmaps (HLLE) 

Donoho and Grimes (2003), Semidefinite Embedding 

(SDE) Weinberger and Saul (2006) and Diffusion Maps 

(DFM) Coifman and Lafon (2006). 

The radius of the neighborhood should be small 

enough to achieve small local estimation error. On the 

other hand, the number of points in the neighborhood 

should be large enough to get a small statistical error. 

There are two approaches to choose the ball’s size: it 

consists of the fixed number of neighbors (k nearest), or 

the radius is set. The first case does not guarantee that the 

radius would be small so that the local approximation 

error could be large. The distribution of the k-th neighbor 

is studied in (Levina and Bickel, 2005; Farahmand et al., 

2007; Campadelli et al., 2015). Also in Smith et al. (2008) 

distance to the k-th neighbor assumed to converge to zero 

and is of the rate of convergence parameter. The second 

case does not guarantee the large enough number of points 

if the neighborhood. This question is mentioned in 

(Levina and Bickel, 2005; Singer and Wu, 2012) but it 

wasn’t specifically discussed. Singer and Wu (2012), it 

was shown that both local and statistical parts of errors are 

asymptotically small for a specific statistic and also large 

deviation error was estimated. 

Random variable ‘the number of points in the 
neighborhood of a fixed point on manifold’ is considered 

in the present paper. Such random variable is binomial 
(sum of Bernoulli) and is well studied in general case 
Shiryayev (1984): De Moivre-Laplace theorem provides 
its distribution for a fixed success parameter and Poisson 
theorem provides its distribution for a fixed finite 

product of success parameters and sample size. In this 
study, it is supposed that sample is generated from a 
good enough continuous measure on a good enough 
unknown manifold and the parameter slowly tends to 

zero. Thus, the case between de Moivre-Laplace and 
Poisson theorems is considered: Success parameter tends 
to zero but it’s product with sample size tends to infinity. 
Another feature of the work is the measure’s support: 
Unknown and curved manifold. In this study, parametric 
families of random variables (correlated random fields 

with neighborhood centers as parameters) are studied 
and uniform results are obtained. 

The paper is organized as follows. It is started with 

the Manifold Learning problem and typical workflow 

formulation in Section Common Manifold Learning 

Problem. In Section Results Description, the main results 

of the paper are listed and commented. In Section Data 

Model the data model is defined and all assumptions are 

listed. Then, Main Results Section contains exact 

formulations of the main results. In Section Some 

Definitions and Lemmas are listed useful definitions and 

lemmas to prove main results. Proof of Main Theorems 

contains the main proofs. In Section Conclusion the 

paper summary and future work directions are given. In 

Appendix A. Definitions and lemmas from differential 

geometry useful definitions and results from differential 

geometry are recalled. In Section Appendix B. Lemmas 

Proofs the lemmas from the Section Some Definitions 

and Lemmas are proved.  

Common Manifold Learning Problem 

Manifold Learning as Manifold Embedding 

The main results are strictly formulated Consider 
unknown -dimensional Data manifold: 
 

{ ( ) : }
p q

X f b b= = ∈ ∈ ⊂ℝ ℝX B  (1) 

 
Covered by a single coordinate chart B and 

embedded in an ambient p-dimensional space p
ℝ , q<p. 

The chart B  is a one-to-one mapping from open 

bounded space p⊂ ℝB  to manifold ( )f=X B  with 

differentiable inverse map 1
:f

− →X B . The manifold 

intrinsic dimension q is assumed to be known. 

Inverse mapping 1( ) ( ),fh X f X−=  whose values 

( )fb h X= ∈B  can be considered as low-dimensional 

coordinates on the manifold ,X  gives low-dimensional 

representations (features) b = hf(X) of high-dimensional 

manifold-valued dataX . 
If the mappings hf(X) and f(b) are differentiable and 

Jf(b) is p×q Jacobi an matrix of mapping f(b) than q-
dimensional linear space: 
 

( ) ( ( ( )))
X f f

T J h X=SpanX  (2) 
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In p
ℝ  is tangent space to the manifold X  at the point 

;X ∈X  hereinafter, Span(H) is linear space spanned by 

columns of the arbitrary matrix H. The tangent spaces 

can be considered as elements of the Grassmann 

manifold Grass(p,q) consisting of all q-dimensional 

linear subspaces in p
ℝ . 

Let 
1{ , , }N NX X= … ⊂X X  be a dataset randomly 

sampled from the DM X  according to certain 

(unknown) probability measure whose support 

coincides withX . Common Manifold learning problem 

is as: Given a sample ,NX  construct a low-dimensional 

parameterization of the DM which produces an 

Embedding mapping: 

 

: ( )p p

h
h h⊂ → = ⊂ℝ ℝX Y X   (3) 

 

From the DM X  to the Feature Space (FS) 

, ,p

h
q p⊂ <ℝY  which preserves specific properties of 

the DM. 

Manifold Learning as Manifold Embedding 

Following Goldberg et al. (2008), we consider a class 

consisting of typical Manifold learning algorithms which 

recover the underlying structure of the Data manifold 

from the sample; this class includes so-called 

‘normalized-output’ algorithms Goldberg et al. (2008). 

A common scheme of the considered algorithms is 

constructed in four steps.  

First Step: Neighborhoods Construction 

For each sample point Xn, local neighborhood 

,1 , ( )
( ) { , , , }

N n n n n k n N
U X X X X= … ⊂ X  consisting of near 

sample points is constructed. Typical examples: 

( ) ( , )
N n N n

U X U X ε=  consists of sample points that 

belong to ε-ball in p
ℝ  centered at Xn, or 

( ) ( , )
N n N n

U X U X k=  in which k(n) = k, consists of k 

nearest-neighbors of the considered point Xn. 

 The constructed neighborhoods determine Sample 

graph ( )NXΓ  consisting of N vertices {X1, X2,…,XN}; the 

vertices Xn and Xj are connected by an edge (Xn, Xj) when 

Xn ∈ UN (Xj) and Xj ∈ UN (Xn). These neighborhoods 

determine ‘Euclidean’ kernels KE(Xn, Xj) = I(Xn ∈UN(Xj); 

Xj ∈UN(Xn)}, in which I(A) is an indicator function of the 

event A, or ‘heat-transfer’ kernel 

( , ) ( , ) exp( )h t n j E n j n jK X X K X X X Xε− = ⋅ − ⋅ −ǁ ǁ  Belkin and 

Niyogi (2003). 

Second Step: Neighborhoods Descriptions 

Chosen descriptions of the neighborhoods (local 

descriptions of the DM) are computed. Examples of 

such descriptions: 

• Barycentric coordinates {wn,1, wn,2,…,wn,k} of the 

‘central’ point Xn with respect to its k nearest-neighbors 

,1 ,2 ,{ , , , }n n n kX X X…  that minimize the reconstruction 

error functions 2

, ,i n j n j

j

X w X− ∑ǁ ǁ  Roweis and Saul 

(2000); the neighborhood UN (Xn, k) is used here 

• An applying of the Principal Component Analysis 

(PCA) Jolliffe (2002) to the neighborhood UN (Xn, ε) 

results in an p×q orthogonal matrix QPCA (Xn) whose 

columns are the PCA principal eigenvectors 

corresponding to the q largest PCA eigenvalues 

(Zhang and Zha, 2004; Bernstein and Kuleshov, 

2014). These matrices determine q-dimensional 

linear spaces LPCA (Xn) = Span(QPCA (Xn)) in the p
ℝ  

which, under certain conditions, accurately 

approximate the tangent spaces ( )nT X
X

 (2) to the 

DM X  at the points Xn Singer and Wu (2012). 

Third Step: Global Description 

Chosen global description of the DM is computed by 

solving some convex optimization problems under some 

normalization constraints. Usually, low-dimensional 

sample features 
1 2( ) { , , , }N N N hh y y y= = … ⊂Y X Y  are 

computed by minimization of chosen cost function 

( | )N NL Y X over 
NY . Examples of cost functions: 

 

2

, ,

1

2

1

1

2

( )

( | )

( | )

( | ) ( ) ( ) )

N

LLE N N n n j n j F

n j

N

LE N N n j F

n

N
T

LTSA N N q PCA n PCA n

n

n n F

L y w y

L y y

L I Q X Q X

H

=

=

=

= −

= −

= − ⋅

⋅ ⋅

∑ ∑

∑

∑

Y X

Y X

Y X

Y

ǁ ǁ

ǁ ǁ

(ǁ

ǁ

 

 
Are used in the algorithms LLE Roweis and Saul 

(2000), LE Belkin and Niyogi (2003) and LTSA 

Zhang and Zha (2004), respectively; here q×(k(n)+1) 

matrix Yn consists of q-dimensional columns {yn, yn,1, 

yn,2,…,yn,k(n)} in which the same pairs of indices n,j 

are uses as in UN(Xn), Hn = Iq-(1/k(n))×1×1
T
 is q×q 

centering matrix in which Iq is q×q unit matrix and q-

dimensional vector 1 consists of units. Some 

normalization constraints on the Feature sample 
N
Y  

are used to avoid the degenerate solutions. 

ISOMAP Tenenbaum et al. (2000) is based on 

estimating the geodesic curves on the DM X . Consider 

the sample weighted graph ( )W NΓ X , in which an edge 

(Xn, Xj) has weight n jX X−ǁ ǁ . Let {Dnj} are the lengths 

of the shortest paths between the vertices Xn and Xj in the 

graph ( )W NΓ X  that can be computed with using the 

Dijkstra algorithm; these quantities {Dnj} accurately 

estimate geodesic distances between the points Xn and Xj 
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on the DM X  Tenenbaum et al. (2000). After that, the 

Feature sample 
NY  are computed with use Multi-

Dimensional Scaling framework (MDS) Cox and Cox 

(2008) by minimization over 
NY  the MDS cost function 

2

, 1

( | )
N

ISOMAP N N nj n j

n j

L D y y
=

= − −∑Y X ǁ ǁ ǁǁ  . 

Fourth Step: Out-of-Sample Extension 

The Feature sample 
NY  gives the values of the 

Embedding mapping h(X) (3) only at sample points; a 

finding of low-dimensional features h(X) for Out-of-

Sample (OoS) points 
NX ∈X X∖  is usually called OoS-

extension problem. The OoS-extension for the algorithms 

LLE Roweis and Saul (2000), ISOMAP Tenenbaum et al. 

(2000), LE Belkin and Niyogi (2003), has been found in 

Bengio et al. (2003) with use Nyström’s 

eigendecomposition technique Saul et al. (2003). 

Results Description 

The main results are strictly formulated in Section 

Main Results and all the assumptions, used in the proof, 

strictly formulated in Section Data Model. Some 

substantive comments are given here. 

Data Model 

Data Model consists of assumptions about support 

(manifold), assumptions about sample distribution and 

assumptions about neighborhood parameter. The 

paper deals with ‘good enough’ manifolds with known 

dimensionality q. The problem of dimensionality 

estimation is a problem of the only integer parameter 

estimation and solutions Campadelli et al. (2015) with 

the rate of error probability ∼exp(-C.N) are known, 

where N is a sample size C > 0 is constant. Such rate 

is smaller than the rates in this article. The sample 

assumed to be independent identically distributed 

(i.i.d.) with unknown ‘good’ continuous measure on 

the manifold. The neighborhood parameter slowly 

tends to zero. 

Main Results 

Manifold behaves as a linear subspace in a small 

neighborhood of a point. Therefore, the intersection of 

a full dimensional Euclidean ball with a manifold is 

close to the low dimensional ball. Thus, the number of 

sampling points, fallen into the neighborhood, should 

be proportional to the volume of the q-dimensional 

ball. This result was mentioned a number of times in 

the works (for example, Levina and Bickel (2005; 

Einbeck and Kalantana, 2013; Singer and Wu, 2012)). 

However, in the Theorem 1, we prove that the number of 

sampling points in the neighborhood, divided by the 

volume of the neighborhood, is a consistent estimate of 

the density at the point. The Theorem 2 prove that 

conditional distribution of sample points in the 

neighborhood is asymptotically uniform. The Corollary 

1 sets that all directions from tangent space are equal for 

the conditional distribution. So, one could think of 

conditional distribution as of uniform distribution on the 

ball in tangent space. In the Theorem 3 asymptotic 

expansion of the considered statistics is given and in the 

Theorem 4 assesses the probability of large deviations. 

The Theorem 5 prove a uniform result of the large 

deviations probability: If we consider all points of the 

manifold, which are a little removed from the border, as 

the centers of the balls, then the minimum over all balls 

of points in each of them, will be asymptotically 

infinitely large with a high probability. 

The features of the results are the curvature of the 

unknown sample support, the tendency to zero of the 

random variable mathematical expectation (‘hit one 

sampling point in a ball with decreases to zero radius’), 

the need to obtain uniform estimation on the manifold. 

The basic ideas used in proofs: Local linearization of 

the support, a generalization of de Moivre-Laplace 

theorems to the case of decreasing the probability of 

success in the Bernoulli scheme, the use of inequalities 

for the probabilities of large deviations of sums of i.i.d. 

random variables, the use of finite nets. 

Data Model 

Let’s assume that: 

M1. p⊂ ℝX  is a q-dimensional manifold covered with a 

single map. That is, for some open q⊂ ℝB  and 

:: ( )pf f→ =ℝB X B  homeomorphism  

M2. q is known 

M3. B  is a bounded set 

M4. Eigenvalues of q×q Jacobi matrixes product 

( ) ( )
T

f f
J b J b⋅  of f mapping uniformly separated 

from 0 and infinity 

M5. Hessian of f mapping exists and bounded on X  

M6. Third order derivatives of f existing and are 

elementwise bounded on X  

M7. Condition number ( )c X is bounded, where X  is the 

smallest number such that for each point, which is 

distant from X  at a distance smaller than1 / ( )c X , 

the only projection exists on X  Niyogi et al. (2008) 

M8. Manifold X  is geodesically convex, that is, for any 

pair of points on X  exists geodesic line and it is the 

shortest path 

 

Note 1. The assumption M1 is equivalent to 

the existence of the global dimension 

coordinate system on the manifold. 

Assumption M3 is used to obtain uniform 

properties of statistics. 
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Assumptions M4-M6 represent the conditions 

of smoothness and are used to connect 

Euclidean distances and volumes with the 

distances and the volumes on the manifold. 

Property M7 means that the manifold does not 

contain a ‘short-circuit‘: The closeness of the 

points on the Euclidean distance implies the 

closeness of points on the manifold. That is, 

the intersection of the small Euclidean 

neighborhood of the point creates a small 

neighborhood of a point on the manifold. 

The assumption M8 is a technical 

simplification for Taylor expansion. 
 

The set B  is bounded and derivatives of f are 

bounded too, so the manifold X  is also bounded. Let a 

be an edge of the circumscribed cube of manifold: 
 

1 1
inf : , , , :{ [ , ]}p

p i i i
a a a a a a a a=′ ′ ′= … ⊂ ⊗ +X   (4) 

 
Let CJ and Cj be the minimum and the maximum 

eigenvalues of the metric tensor ( ) ( ),T

f fJ b J b b ∈B  

correspondingly: 
 

( )( ) ( )
inf min T

f f
J J b J bb

c
λ σ

λ
∈∈

=
B

 (5) 

 

( )( ) ( )
inf max T

f f
J J b J bb

C
λ σ

λ
∈∈

=
B

 (6) 

 
Let CH be the maximum element of Hessian matrix of 

( , )fB  mapping: 

 
2

2 2

, , 1, , , , 1, , 1

( ) ( )
sup sup

p

k
H

X i j q X i j q ki j i j

f b f b
C

b b b b∈ = … ∈ = … =

∂ ∂
= =

∂ ∂ ∂ ∂∑
X X

 (7) 

 

where, X = (f1(b),…,fp(b))
T
 . Let: 

 
3

, , , 1, ,

2
3

, , , 1, , 1

( )
sup

( )
sup

T
X i j m q i j m

p

k

X i j m q k i j m

f b
C

b b b

f b

b b b

∈ = …

∈ = … =

∂
=

∂ ∂ ∂

∂
=

∂ ∂ ∂∑

X

X

  (8) 

 

Manifold X  is unknown and it is represented by finite 

random sample 
1

{ , , } p

n N
X X= … ⊂ ⊂ ℝX X  with N points. 

Moreover, it is assumed about sample selection that: 

 

S1. Points from 
nX  are i.i.d. with some probability 

measure µ such that X  is its support: = suppµX  

S2. Measure µ is continuous with respect to Riemannian 

measure on manifold and its density pµ is bounded 

from zero and infinity 

S3. Density pµ is twice smooth on X  and its derivatives 

are bounded 
 

Note 2. Manifold X  has Riemannian measure 

dV(X) (volume measure) which is equal to the 

-dimensional volume in the main term 

(Section Some Definitions and Lemmas). Let 

( , , )Ω PB  be a probability space, than 

Borelian function, : ( )X X ω→ =XB is called 

random variable on the manifold. Let’s call 

such induced onX  the measure as µ. If for 

each Borelian set ∈X B  

( ) ( ) ( ),X p X dV Xµµ ∈ = ∫XX  then the 

function ( ),p X Xµ ∈X  is a probability density 

function Pennec (1999). 
 

Let pmin and pmax be the minimum and maximum 

values of pµ (they exist by S2): 

 

min
inf ( )
X

p p Xµ∈
=

X

 (9) 

 

max sup ( )
X

p p Xµ
∈

=
X

 (10) 

 

Let define the bounds for maximum eigenvalues of 

first and second derivatives (exist by S3): 

 

,1
, ( ): 1

sup ( )
X

p
X T

C p Xθ µ
θ θ∈ ∈ =

= ∇
X X ǁ ǁ

ǁ ǁ   (11) 

 

,2
, ( ): 1

sup ( )
X

p
X T

C p Xθ θ µ
θ θ∈ ∈ =

= ∇ ∇
X X ǁ ǁ

ǁ ǁ   (12) 

 

where, ∇θ is a covariant derivative (Appendix A), which 

is a kind of directional derivative generalization for the 

manifold. 

 

Note 3. S1 and S2 are standard assumptions 

whose guarantee correspondence between 

sample 
NX  and manifold X . Assumption S3 

is useful for uniform results.  
 

For neighborhood parameter ε = ε(N) it is assumed that: 
 

• P1. For : 0N ε→ ∞ →  

• P2. For : qN Nε→ ∞ → ∞  

• P3. For 4: 0qN Nε +→ ∞ →  

 
Note 4. The assumption P1 means that the 

neighborhood size tends to zero and therefore 

the expansion of functions at the main term is 

a term with the lowest degree of length. The 

assumption P2 provides an infinite number of 

sample points in the neighborhood despite the 
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decrease in the size of the neighborhood. 

Assumption P3 is stronger than P1 and 

guarantees that the contribution of the bias of 

the order ε2
 is infinitely small in the results of 

the central limit theorem for the number of 

points of order Nεq
. 

Main Results 

Let Iε(XnX) be an indicator of the event ‘p-

dimensional distance between Xn and X is less of 

equal to ε’, that is Iε(XnX) for 
nX X ε− <ǁ ǁ  and 

Iε(XnX) = 0 otherwise. 

Let Nε(X) be the number of sample 
N
X  points in p-

dimensional ε-neighborhood of pX ∈ℝ : 

 

1

( ) ( | ).
N

n

n

N X I X Xε ε
=

= ∑   (13) 

 

Let Vq be the volume of q-dimensional ball of a 

unit radius: 

 
/ 2

( / 2 1)

q

qV
q

π
=

Γ +
  (14) 

 

where, 1

0
( ) , 0z tz t e dt z

∞ − −Γ = >∫  is a gamma function, that 

is 2
!

m

mV
m

π
=  and 2 1

2

(2 1)!!

m m

mV
m

π
+ =

+
for integer m. 

Theorem 1. (weak law of large numbers). If M1-M8, 

S1-S3 and P1-P2, then for each X ∈X  and Nε(X) for 

N→∝: 
 

( )
( )p

qq

N X
p X V

N

ε
µε

→ ⋅  

 
where, Vq is a volume of -dimensional ball (14). 

Theorem 2. (conditional uniform distribution). If 

M1-M8, S1-S3 and P1-P2, then for each X ∈X  for 

N→∝: 

 

( | ( | ) 1) 1 /q

n n qp X I X X Vε ε= ⋅ →  

 

where, Vq is a volume of q-dimensional ball (14). 

Corollary 1. If M1-M8, S1-S2 and P1-P2, then for 

each X ∈X  the spectrum of a local covariance matrix 

1

1

( | ) ( ) ( )

( | )

N
T

n n n
p pn

N

n

n

I X X X X X X

I X X

ε

ε

×=

=

⋅ − ⋅ −
Σ = ∈

∑

∑
ℝ  tends to ones 

and p-q zeros as N→∝. Moreover, ones correspond to 

vectors from tangent space and zeros corresponds to 

vectors from cotangent space. 

Theorem 3. (central limit theorem for Nε(X)). If M1-

M8, S1-S3 and P1-P3, then for each X ∈X  and Nε(X) 

(13) N→∝: 
 

( ) ( )
(0,1)

( )

q

q d

q

q

N X N p X V
N

N p X V

ε µ

µ

ε

ε

−
→  

 
where, Vq is a volume of q-dimensional ball (14), N(0,1) 

is standard normal distribution. 

Theorem 4. (large deviations of Nε(X)). If M1-M8, 

S1-S2 and P1-P3, then for 0<z<1/16: 

 

( )

2 max
min

mi

2

n

2

min max

( )
(1 )

exp 4 /

q

q q

q

q

N X C p
P p z

N V V p

z N V p p

ε ε
ε

ε

 
≤ ⋅ − − ⋅  

 

≤ − ⋅

E

 

 

where, Vq is a volume (14), C
E

 is a constant from 

Corollary 4, constants pmin, pmax, CRic, Cp,1 and Cp,2 are 

defined in (9), (10), Lemma 4, (11), (12) 

correspondingly. 

If also S3, then for 0<z<1/16: 

 

( )

( )

2

2

2

2

( )

(

( )
1

( )

exp 4 ( ) ;

( )
1

( )

exp 4 ( ) .

)

q

q q

q

q

q

q q

q

q

N X C
P z

N V p X V p

z N V p X

N X C
P z

N V p X V p

z N V p X

X

X

ε

µ µ

µ

ε

µ µ

µ

ε
ε

ε

ε
ε

ε

 
− ≥ + ⋅  

 

≤ − ⋅

 
≤ − ≤ − − ⋅  

 

≤ − ⋅

E

E

 

  

Theorem 5. (uniform large deviation). If M1-M8, S1-

S2 and P1-P3, then for 

,2

min min,1 ,2

1 24( 2 1) 1 1
min , , , ,

( ) max{1, } 2

1 1 1 1 1
, , , , },
2 4 41 2

{
q

II Ric Ric p

qq

qRic p p

c C C C C

V p pC C C C

ε −
≤

+ +
E

X

and for 

each point (not too close to the boundary) X ε∈X  (17) and: 

 

( )

2 max
min

min

2

m n m

2

i ax

( )
inf (1 )

6
exp 4 / (9 )

qX
q q

p

q

q

N X C p
P p z

N V V p

a p
z N V p p

ε

ε ε
ε

ε
ε

∈

 
≤ ⋅ − − ⋅  

 

 
≤ − ⋅  

 

E

X

 

 

where, Vq is a volume (14), C
E

 is a constant from 

Corollary 4, constants pmin, pmax, CRic, Cp,1 and Cp,2 and 

are defined in (9), (10), Lemma 4, (11), (12) 

correspondingly and a>0 is an edge of the circumscribed 

other cube (4). 
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Note 5. If ( ) , 1/ , 0N C N q Cα
α αε α−≥ ⋅ < > , 

then the right part of Theorem’s 4 equation 

tends to zero faster than any degree ,N β−  

β>0 as a product of exponential and 
polynomial terms.  

 

Some Definitions and Lemmas 

Definitions and Lemmas which are used to prove 

main theorems are listed in this section. 

Local Linearization 

Manifold X  is close to q-dimensional linear 

tangent space ( )XT X  in a neighborhood of each point. 

Differentiation on the manifold is slightly different 

from the differentiation in Cartesian coordinates in 
k
ℝ . The differences are mainly of a technical nature 

and the main difference lies in the fact that derivatives 

are defined only in the directions from ( )XT X  

(Appendix A). 

In a sufficiently small neighborhood of X ∈X  there 

exists a one-to-one mapping between the points of the 

manifold X  and a subset of the elements of the tangent 

space ( )XT X . In this neighborhood vectors ( )XV T∈ X  are 

coordinates. These coordinates are called locally 

Riemann (Appendix A). 
Manifold volume element and q-dimensional 

volume element of the tangent space are related by the 
following lemma: 
 

Lemma 1. (Petersen (2006)) Riemannian 

measure in polar coordinates in the neighborhood of 

X ∈X  has form: 
 

(exp ) ( , )XdV t J t dtdθ θ θ=  

 

where, , 1, 0, [0, ],
X

T t t tθ θ∈ = > ∈ɶX ǁ ǁ exp
X

V is an 

exponential map of V at X (Appendix A): 
 

1 1 2

1 1

( , ) ( , ) ( )

( , ) ( , )

q q q

X

q q

X

J t t t Ric O t

J t t t Ric

θ θ θ

θ θ θ

− + +

− +

= + +

= + ɶ
ɶ ɶ

 

 

RicX (θ,θ) is a Ricci curvature (26) at X, 

{exp | [0, ]}, ( )X X
X t t t Tθ θ∈ ∈ ∈ ɶ

ɶɶ ɶ ɶ X  .  

The distance between the closest points of the 

manifold in q-dimensional space and the distance between 

them in the q-dimensional Riemannian coordinates 

Singer and Wu (2012) are related by Lemma: 
 

Lemma 2. (Coifman and Lafon (2006)). For 

,X X ∈ɶ X , such that exp ( )
X

X tθ=ɶ , where ( )
X

Tθ ∈ X and 

1θ =ǁ ǁ , for small (and small ( )and small h X X= − ɶǁ ǁ  ):  

3 3

3

1
( , ) ( )

24

1
( , )

24

X

X

t h II h O h

t h II h

θ θ

θ θ

= + +

= + ɶ
ɶ ɶ

ǁ ǁ

ǁ ǁ

 

 

where, {exp | [0, ]},
X

X t t tθ∈ ∈ɶ ɶ ɶ ( ),
X

Tθ ∈ ɶ
ɶ X ( , )XII V V is a 

second fundamental form (22).  

The values of the right-hand part of the Lemmas 1 

and 2 may be bonded under the M1-M8 assumptions: 

 

Lemma 3. For X ∈X  and ( )XTθ ∈ X  and 1θ =ǁ ǁ : 

 

( , ) H
X II

J

C
II C q

c
θ θ ≤ ≡ ⋅ǁ ǁ  

 

where, CH is a maximal element of Hessian matrix (7), 

CJ is a minimum eigenvalue of the metric tensor (5): 

 

Lemma 4. For X ∈X , ( )XTθ ∈ X  and 1θ =ǁ ǁ : 

 
2

3

3/2

5 2

( , ) 2

18 4 /

H T J

X Ric

J

JJ
H H J

J J

C C C
Ric C q

c

CC
q C C c

c c

θ θ
+

≤ ≡ ⋅

 
+ ⋅ ⋅ + ⋅  

 

ǁ ǁ

 

 

where, CH is a maximum element of Hessian matrix (7), 

CJ and CJ are a minimum and maximum eigenvalues of 

the metric tensor (5) and (6), CT is the maximal norm of 

the third derivative (8). 

The proofs of Lemmas 3 and 4 are in Appendix A. 

De Moivre-Laplace Lemmas for Slowly Decreasing 

Probability 

We use local and integral de Moivre-Laplace lemmas 
for success parameter which slowly tends to zero. In the 
classical formulation, the parameter is considered to be 
fixed. However, the proof almost does not change, if we 
assume success parameter pn depends on the sample size, 
but pn. N → ∝ when n → ∝. The only difference is the 
functions expansion in a small parameter ( )1 / ,np n⋅  
instead of a small parameter 1/n: 
 

Lemma 5. (local de Moivre-Laplace for slowly 

decreasing probability). Let the success probability in a 

Bernoulli scheme pn > 0 depends on the sample size n 

and qn = 1-pn and also pn. n → ∝ for n → ∝. Then for n 

→ ∝ and the number of successes k such that 

2/3

| |
0

( )

n

n n

k np

np q

−
→ for n → ∝: 

 
21 ( )

( ) ~ exp
22

n
n

n nn n

k np
P k

np qnp qπ
 − −
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That is: 

 

2
{ :| | ( )}

( )
sup 1 0

1 ( )
exp

22

n n n

n

k k np np q
n

n nn n

P k

k np

np qnp q

ϕ

π
− ≤

− →
 − −
 
 

 

 

where, ( )n nnp qϕ  is an arbitrary function such that 

( )2/3( ) ( )n n n nnp q o np qϕ = .  

Corollary 2. Lemma is equivalent to the following 

statement: for each z ∈ℝ  such that 1/6( )
n n

z o np q= and 

n nnp z np q+  is integer from {1,.., n}: 

 
2 /21

( ) ~
2

z

n n

n n

p np z np q e
np qπ

−+  

 

That is for n → ∝: 

 

2{ :| | ( )} / 2

( )
sup 1 0

1

2

n n n

z z n z

n n

p np z np q

e
np q

ψ

π
≤ −

+
− →  

 

where, 1/6( ) ( )
n n

n o np qψ = . 

 

Lemma 6. (integral de Moivre-Laplace for 

slowly decreasing probability). Let the success 

probability in a Bernoulli scheme pn > 0 depends on 

the sample size n and qn = 1-pn and also pn. n→∝ for 

n→∝. Let ( ) k k n k

n n n n
P k C p q −= , 

( , ] ( )n n n n n

a z b

P a b P np z np q
< ≤

= +∑ . Then sup
a b−∞ ≤ < ≤ ∞

 

21
( , ] exp( / 2) 0,

2

b

n
a

P a b z dz n
π

− − → → ∞∫ . The proofs 

of Lemmas 5 and 6 are in Appendix B. 

The Probability of Large Deviations for Bounded 

Random Variables 

To estimate the probability of large deviations we 

will use the following lemma (proved in Appendix B): 

 

Lemma 7. Let x1,…,xn be i.i.d. random variables, 

1
χ < ∞E , 

1 1
| | Cχ χ− ≤ < ∞E  and constants m1,…,mn 

and m, such that 
1, ,

max | | .
k n k k

m mχ= … − ≤E  Let 

1

)
1

(
n

k k

k

m
n

χ χ
=

= −∑  and 2 2

1 1
( )σ χ χ= −E E . 

 

Then for 2H C≥  and 
1

0 :x
H

≤ ≤  

2 2 2

2 2 2

( ) exp( / 4)

( ) exp( / 4)

P x m x n

P x m x n

χ σ σ

χ σ σ

≥ ⋅ + ≤ − ⋅

≤ − ⋅ − ≤ − ⋅
 

 

and for 
1

x
H

≥ : 

 
2 2

2 2

( ) exp( / 4 )

( ) exp( / 4 )

P x m x n H

P x m x n H

χ σ σ

χ σ σ

≥ ⋅ + ≤ −

≤ − ⋅ − ≤ −
 

 

Integration Area Replacement 

Let Bε(X) be the intersection of p-dimensional 

Euclidian ε-neighborhood of X ∈X  and manifold X : 

 

( ) { | }B X X X X Xε ε= ∈ ∩ − <ɶ ɶ ɶX ǁ ǁ   (15) 

 

Let ( )B Xε
ɶ  be the ε-neighborhood of X in locally 

Riemannian with center X ∈X : 

 

( ) { | ( )

exp ( ) }

X

X

B X X V T

X V V

ε

ε

= ∃ ∈

= ∩ <

ɶ ɶ

ɶ

X

ǁ ǁ
  (16) 

 

Let εX  be the set of internal points which are ε far 

from manifold:  

 

{ | ( )

exp }

X

X

X V T V

V

ε ε= ∈ ∀ ∈ ∩ <

∈

X X X

X

ǁ ǁ
 (17) 

 

Lemma 8. For each bounded function and 

( , ) ( , , ),g X X g X t θ=ɶ ɶ
1 24 ( 2 1) 1

min , ,
( ) max{1, } 2

q

II Ric
c C C

ε
 ⋅ − ≤  
  X

a

nd , , ( ) 1
X

X X Tε θ θ∈ ∈ ∈ ∩ =ɶX X X ǁ ǁ  : 

 

( ) ( )

2

,

( , ) ( ) ( , ) ( )

8 sup | ( , ) |

B X B X

q

q
X X

g X X dV X g X X dV X

V g X X

ε ε

ε +

−

≤ ⋅ ⋅ ⋅

∫ ∫ ɶ

ɶ

ɶ ɶ ɶ ɶ

ɶ
 

 

where, ( )c X  is a condition number (M7), Vq is the 

volume (14), CII and CRic are constants from Lemmas 

3 and 4. 

Lemma is proved in Appendix B. 

Finite Nets 

Additional construction will be used to prove the 

uniformity of the estimates. δ-net of the metric space ℤ  

is a set ( )net δ ⊂ℤ ℤ  such that for each point Z ∈ℤ  exists 

δ-close point ( ).net netZ δ∈ℤ  



Yury Aleksandrovich Yanovich / Journal of Mathematics and Statistics 2016, 12 (3): 157.175 

DOI: 10.3844/jmssp.2016.157.175 

 

165 

Since the set of εX (15) far from the border, points is 

a subset of X  and M2 and M4 hold true, then applying 

Lemma 10 we get.  

Corollary 3. For each δ > 0 and ε > 0 exist finite δ-

net εX with 
2

p

a p

δ
 
  
 

or fewer elements, where a > 0 is 

an edge of p-dimensional hypercube (4). 

 

Proof of Main Theorems 

Let χ be the indicator the event ‘random point Xɶ , 

which is distributed with density pµ, is in p-

dimensional ε-neighborhood of X ∈X ’:  

 

( | , ) ( )X X I X Xχ χ ε ε= = − ≤ɶ ɶǁ ǁ  (18) 

 

where, I(A) = 1, if occurred and else 0. Nε(X) (13) is a 

sum of Bernoulli random variables: 

 

1

1

( ) ( | , )
N

n

N X X Xε χ ε
=

= ∑  (19) 

 

Let’s estimate first and second moments of χ: 

 

Lemma 9. Let: 
 

1 24 ( 2 1) 1
min , ,

( ) max{1, } 2

q

II Ric
c C C

ε
 ⋅ − ≤  
  X

 

 

X ε∈X , then 2 2( ( ) )q

qV p Xµχ χ ε ε δ= = ⋅ ⋅ +
E

E E , where: 

 

( )
max

2 2

,1 ,2 ,2

| | 8

( )
Ric

Ric p p Ric p

p C

C C C C C

δ

ε ε

≤ ⋅ +

+ ⋅ ⋅ + + ⋅ ⋅

E

  (20) 

 
and constants Vq, pmin, pmax,CII CRic , Cp,1 and Cp,2 are 

defined in (14), (9), (10), Lemmas 3 and 4, (11) and (12). 

Also, if S3 is not supposed: 
 

2 2

min max( 8 )q q

q q RicV p V C pχ χ ε ε += ≥ ⋅ ⋅ − ⋅ ⋅ +E E  

 

Proof. Note that χ2 = χ. So 2χ χ=E E . Let point 

X ∈ɶ X be a random variable with density ( )p Xµ
ɶ . 

 

( )
( ) ( )

B X
p X dV X

ε
µχ = ∫ ɶ ɶE  

 

Using Lemma 8 for ( )p Xµ
ɶ and (10): 

 

( ) ( )

2

max

( ) ( ) ( ) ( )

8

B X B X

q

q

p X dV X p X dV X

V p

ε ε
µ µ

ε +

−

≤ ⋅ ⋅ ⋅

∫ ∫ ɶɶ ɶ ɶ ɶ

 

Using expansion: 
 

2

( ) ( ) ( )

( ), ( )
2

p X p X t p X

t
p X X B X

µ θ

εθ θ

= + ⋅∇

+ ∇ ∇ ∈ɶ ɶ

ɶ

ɶ ɶɶ ɶ ɶ
 

 

And the symmetry of ( )B Xε
ɶ : 

 

( )

( )

( )

1

2

1

1

( ) ( )

( )

2

0

1 1

0

4 1

,1 ,2
0

6

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
2

( , )

( )

|

|

| |

| |

|

q

q

q

B X B X

B X

S

q q

X

q

S

q

Ric p p
S

p X dV X p X dV X

p X p X dV X

t
t p X p X

t t Ric dtd

t p X dtd

C C C t dtd

C

ε ε

ε

µ µ

µ µ

ε

θ θ θ

ε

θ

ε

θ θ θ

θ

ε θ

ε

−

−

−

− +

−

−

= −

 
⋅ ∇ + ∇ ∇ 

 

⋅ +

⋅ ∇

+ ⋅ ⋅ + ⋅

⋅

∫ ∫

∫

= ∫ ∫

≤ ∫ ∫
∫ ∫

+

ɶ ɶ

ɶ

ɶ ɶ

ɶɶ

ɶ ɶ ɶ

ɶ ɶ

ɶɶ

ɶ ɶ

( )
( )

1

1

,2
0

4 2

,1 ,2 ,20

|

( )

q

q

Ric p
S

q

q Ric p p Ric p

C t dtd

V C C C C C

ε
θ

ε ε

−

−

+

⋅ ⋅

= + ⋅ ⋅ ⋅ + + ⋅ ⋅

∫ ∫

 

 
So:  

 

1
2

( )

1

0

2

( ) ( ) ( )

( ) ( , )

( ) .

q

q

q
B X

q

XS

q

q Ric

p X dV X V p X

p X t Ric dtd

p X V C

ε
µ µ

ε

µ

µ

ε

θ θ θ

ε

−

+

+

− ⋅

= ⋅

≤ ⋅ ⋅ ⋅

∫

∫ ∫

ɶ

ɶɶ

ɶ

ɶ ɶ  

 
and for smooth density (with S3):  
 

2( ( ) )q

qV p Xµχ ε ε δ= ⋅ ⋅ +
E

E  

 
Where: 
 

( )
max

2 2

,1 ,2 ,2

| | 8

( )
Ric

Ric p p Ric p

p C

C C C C C

δ

ε ε

≤ ⋅ +

+ ⋅ ⋅ + + ⋅ ⋅

E

 

 
Without S3 for χE : 

 

min
( ) ( )

2 2

max min max

( ) ( ) ( )

8 ( 8 )

B X B X

q q q

q q q Ric

p X dV X p dV X

V p V p V C p

ε ε
µ

ε ε ε+ +

≥

− ⋅ ⋅ ⋅ ≥ ⋅ ⋅ − ⋅ ⋅ +

∫ ∫ ɶɶ ɶ ɶ

 

 
The Lemma is proved. 

Corollary 4. If: 
 

,2 ,1 ,2

1 24( 2 1) 1
min{ , ,

( ) max{1, } 2

1 1
, }

1

q

II Ric

Ric p Ric p p

c C C

C C C C C

ε −
≤

+ +

X
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and X ε∈X , then in Lemma 8 for δ
E

(20): 

 

max| | 8 1.RicC p Cδ ≤ ≡ ⋅ + +
E E

 

 

Corollary 5. If: 

 

,2 ,1 ,2

1 24( 2 1) 1
min{ , ,

( ) max{1, } 2

1 1
, },

1

q

II Ric

Ric p Ric p p

c C C

C C C C C

ε −
≤

+ +

X
 

 

and X ε∈X , then: 

 

( )
( )

2 2 2 4 2

2 2 2 4 2

( ) ( )

( ) ( )

q q q

q

q q q

q

V p X C p X C C

V p X C p X C C

µ µ

µ µ

χ ε ε ε ε ε

χ ε ε ε ε ε

+

+

≤ ⋅ + − + +

≥ ⋅ − − − −

Var

Var

E E E

E E E

 

 

Proof. Using Lemma 9 and Corollary 4 we transform: 

 

( )
( )

( )

22 2

2

2 2 2 4 2

( ( ) )

1 ( ( ) )

( ) ( )

q

q

q

q

q q q

q

V p X

V p X

V p X C p X C C

µ

µ

µ µ

χ χ χ ε ε δ

ε ε δ

ε ε ε ε ε+

= − = ⋅ ⋅ +

⋅ − ⋅ ⋅ +

≤ ⋅ + − + +

Var
E

E

E E E

E E

 

 

( )
( )

( )

22

2 2

2 2 2 4 2

( ( ) ) 1 ( ( ) )

( ) ( )

q q

q q

q q q

q

V p X V p X

V p X C p X C C

µ µ

µ µ

χ χ χ

ε ε δ ε ε δ

ε ε ε ε ε+

= −

= ⋅ ⋅ + ⋅ − ⋅ ⋅ +

≥ ⋅ − − − −

Var

E E

E E E

E E

 

 

The Corollary is proved. 

Proof of Theorem 1. Using (19): 

 

( )N X Nε χ= ⋅E E  

 

As B is open set (assumption M1), from Corollary 4 

for small ε: 

 

2( )
( )q q

q q

N X
V p X V C

N

ε
µε ε +− ≤

E
 

 

 Using Chebyshev's inequality for 
( )N X

N

ε  and 

( )q Nε ψ⋅ , where (any 

( ) 1/ 4

( ) qN Nψ ε
−

= 2( ) : ( )qN N Nψ ε ψ⋅ → ∞  and  ψ(N) → 0 

for N → 0 is allowed), we have:   

 

2 2

( )
( )

( )

q

q

N X
P N

N N N

ε χχ ε ψ
ε ψ

 
− ≥ ≤ 

 

Var
E  

 

So: 

2

2 2

( )
( )

( )

q q q

q q q

N X
P V p X V C

N N N

ε
µ

χε ε ε
ε ψ

+ 
− ≥ + ≤ 

 

Var
E

 

 

Note that for N → ∝: 

 

( )
2 2

2 2 2 4 2

2

2

( )

( ) ( )
0

( )

( ) 0

q

q q

q

q

q

q

N N

V p X C p X C C

N N

V C N

µ µ

χ
ε ψ

ε ε ε ε

ε ψ
ε ψ

+

+

⋅ + − + +
≤ →

+ →

Var

E E E

E

 

 

 So: 

 

 
( )

1 0.
( )

p

q

q

N X

N V p X

ε

µε
− →  

 

The Theorem is proved. 

Proof of Theorem 2. As N→0 

( | ) 1n nI X XX Xε = ⇒ → . 

So: 

 

( | ( | ) 1)

( )
( ) 1 /

( ( )) ( )

q

n n

q q
n

n qq

q

p X I X X

p X
p X V

P B X p X V

ε

µ
µ

ε µ

ε

ε ε
ε

= ⋅

⋅ →= = ⋅
⋅

 

 

 The Theorem is proved. 

Proof of Corollary 1. Let be an orthonormal basis in 

the tangent space )(XT X  and U1,…,Up-q be an 

orthonormal basis in the cotangent space )(XT ⊥
X . Then 

V1,…,Vq,U1,…,Up-q is a basis in p
ℝ . 

From the Theorems 1 and 2 for the elements of local 

covariance matrix: 

 

1

1

1

1

1

1

( | ) (( ) ) (( ) )

( )

( | )

( | ) (( ) ) (( ) )

0

( | )

( | ) (( ) ) (( ) )

0

( | )

N
T T

n n i n j

n

N

n

n

N
T T

n n i n j

n

N

n

n

N
T T

n n i n j

n

N

n

n

I X X X X V X X V

I i j

I X X

I X X X X V X X U

I X X

I X X X X U X X U

I X X

ε

ε

ε

ε

ε

ε

=

=

=

=

=

=

⋅ − ⋅ ⋅ − ⋅
→ =

⋅ − ⋅ ⋅ − ⋅
→

⋅ − ⋅ ⋅ − ⋅
→

∑

∑

∑

∑

∑

∑

 

 

The Corollary is proved. 

Proof of Theorem 3. χ (18) has Bernoulli 

distribution, so using Lemma 8 and it’s Corollaries we 

get the conditions of Lemma 6 for χ: 
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0χ →E  and N χ⋅ → ∞E  for N → ∝. It remains to 

note that for N → ∝: 
 

( )

( )

1

1

q

q X

q

q X

V p

V p

µ

µ

χ
ε

χ
ε

→

→
Var

E

 

 

So by Lemma 8: 

 

( ) ( )
(0,1)

( )

q

q d

q

q

N X N p X V
N

N p X V

ε µ

µ

ε

ε

−
→  

 

The Theorem is proved. 

Proof of Theorem 4. We verify the conditions of 

Lemma 7 for χ (18), mk = εq
. Vp. pµ (X), 2qm Cε +=

E
 

(Corollary 4) and: 

 

2

| | 1

| |
q

k km C

χ χ

χ ε +

− ≤

− ≤
E

E

E
 

 

For 
minmin

1 1
min ,

44
q

pC p
ε

  <  
  E

 by Corollary 4: 

 

( )
( )

2 2 2 4 2( ) ( )

( ) 1 1/ 4 1/ 4 1/ 4 2 ( )

1/ 4 ( )

q

q

q q

q q

q q

q

q

V

p X C p X C C

V p X V p X

V p X

µ µ

µ µ

µ

χ ε

ε ε ε ε

ε ε

χ ε

+

≤

⋅ + − + +

≤ ⋅ + + + < ⋅

≥ ⋅ ⋅

Var

Var

E E E

 

 

Thus, the conditions of Lemma 7 fulfilled and for z 

≤ 1/16: 

 

( )

( )

2

2

2

2

( )
1

( )

exp ( ) / 4 ;

( )
1

( )

exp ( ) / 4

q

qq

q

q

q

qq

q

q

N X C
P z

V pN V p X

z N V p X

N X C
P z

V pN V p X

z N V p X

ε

µµ

µ

ε

µµ

µ

ε
ε

ε

ε
ε

ε

 
− ≥ + ⋅  

 

≤ − ⋅

 
− ≤ − − ⋅  

 

≤ − ⋅

E

E

 

 

Similarly, if the S3 is not fulfilled, then replacing the 

evaluation density expansion in Taylor's formula at their 

rough equivalents. 

The Theorem is proved.  

Proof of Theorem 5. Indicator function is discontinuous, 

so Nε(X) is a discontinuous function too. However, due to 

nesting balls /3( ) ( )B X B Xε ε⊂ɶ ɶ ɶ  for /3( )X B Xε∈ ɶ ɶ  and ε: 

/3( ) ( )N X N Xε ε≥ɶ  

 
So we get the statement of this Theorem by Corollary 

3, Lemma 11 and Theorem 3.  

The Theorem is proved. 

Conclusion 

Random variable ‘the number of points in the 

neighborhood of a fixed point on manifold’ is considered 

in the present paper. Points are assumed to lie on a good 

enough unknown manifold, the neighborhood is ball 

shaped and Euclidean, its radius slowly tends to zero 

with sample size growth.  

Asymptotic expansion and uniform large deviation 

results are obtained for the considered random variable. The 

problem statement is motivated by manifold learning 

problems (Roweis and Saul, 2000; Zhang and Zha, 2004; 

Bernstein and Kuleshov, 2014). 

The results of the paper could be used for the manifold 

learning algorithms analysis and could be generalized to get 

asymptotic properties of all algorithm steps. 
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Appendix A. Definitions and Lemmas from 

Differential Geometry 

In this Section, we introduce the necessary 

information for further consideration related to the 

differential geometry.  

Covariant Derivative 

Differentiation on manifolds refers as usual. We 

recall that does it mean. It is easy to determine the 

derivative of a function in a given direction {0}pV ∈ℝ ∖  
at a given point pZ ∈ℝ of the p-dimensional real space 

p
ℝ . However, for X ∈X  even a small displacement in 

all directions leaves the transfer result from the 

manifold. More precisely, for the manifold X  covered 

with the map ( , )fB  and full rank Jacobi matrix 
1( ( ))FJ f X− , at 

0 0( )X f b=  manifold locally behaves 

almost like a q-dimensional linear space tangent space 

( )XT X , which can be defined as a linear space spanned 

by the p-dimensional column vectors of the matrix: 
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0 0 01
( ) ( ) ( )f q

f f
J b b b

b b

∂ ∂ = … ∂ ∂ 
 

 

where, the superscript denotes the component of the 

vector. That is, one can only differentiate in directions 

00( ) ( )XV X T∈ X . Therefore, the tangent space 

0
( )XT X depends on the point X0 of the manifold, in which 

it is defined. Hence, on the manifold one cannot 

determine the derivative of a scalar function ϕ(X) as the 

limit of changes in the function ϕ from point X0 to point 

X0 + tV(X0) over the length of the tV(X0), since 

0 0( )X tV X+ ∈/ X  and the value of ϕ at this point is not 

defined in the general case. So, instead of X0 + Tv(X0) a 

curve γ(t), t∈ (-ε,ε) is considered on the manifold, such 

that γ(0) = X0 and 
0(0) ( )V X

t

γ∂
=

∂
. The derivative of a 

scalar function is defined as 

0

0
( ) 0

0 0

( ( )) ( (0)) ( ( )) ( )
( ) lim lim .V X

t t

t t X
X

t t

ϕ γ ϕ γ ϕ γ ϕϕ
→ →

− −
∇ = =  

 

Note. The identity covering exists in the case 

of Euclidean space :m m=ℝ ℝB and f(b) = b, 

i.e., X = b. Therefore, as a curve γ(t), one can 

choose γ(t) = X0 + tV(X0) and the covariant 

derivative of the function ϕ coincides with the 

usual directional derivative.  

 

Consider the restriction of the vector field 

( ) ( ),XV X T X∈ ∈X X  on the curve γ(t): 

( ) ( ( )), ( , )V t V t tγ ε ε= ∈ −ɶ . The derivative of ( )V tɶ  is 

defined as usual: 

 

0

( ) ( )
( ) lim

h

V V t h V t
t

t t→

∂ + −
=

∂

ɶ ɶ ɶ

 

 

 where, t ∈ (-ε,ε) . However, the derivative ( )
V

t
t

∂
∂

ɶ

can be 

not in the 
( ) ( )tTγ X . Therefore, one can define the covariant 

derivative ( )
DV

h
dt

ɶ

 as a projection ( )
V

t
t

∂
∂

ɶ

 on 
( ) ( )tTγ X . 

Next, we consider the equation: 

 

( ) 0

(0)

DW
t

dt

W W


=


 =

ɶ

ɶ ɶ

  (21) 

 

where, 
(0) ( ).W Tγ∈ X  It’s solution ( )W tɶ  exist and is called 

parallel transport of ( )W tɶ  over γ(t) and is designated as 

( ), (0)( ) tW t P Wγ γ=ɶ ɶ . Now, to determine the derivative of the 

vector field ( ),W X X ∈X  along a curve γ(t), t ∈(-ε, ε). 

We will transfer W(γ(t)) from point X0 = γ(0). The result 

of the parallel transport 
(0), ( ) (0)( ( )) ( ),tP W t Tγ γ γγ ∈ X  so the 

difference 
(0), ( ) ( ( )) ( (0))tP W t Wγ γ γ γ−  is determined in 

(0) ( )Tγ X  and the covariant derivative is defined for the 

vector field W(X) on X : 
 

0

(0), ( )

( ) 0
0

( ( )) ( (0))
( ) lim

t

V X
t

P W t W
W X

t

γ γ γ γ
→

−
∇ =  

 
where, : ( , )γ ε ε− → X  and 

0(0) ,Xγ = ∈X  

00(0) ( ) ( )XV X Tγ ′ = ∈ X  . 

 
Note. For the Euclidian space m

ℝ the 

solution of (21) is 

(0), ( ) 0 0( ( )) ( ( )) ( ( ))tP W t W t W X tV Xγ γ γ γ= = +  and 

covariant derivative of the vector field 

equals to directional derivative: 
 

0

0 0 0
( ) 0

0

( ( )) ( )
( ) limV X

t

W X tV X W X
W X

t→

+ −
∇ =  

  
We will denote the covariant derivative in the 

direction ( ) {0}XV T∈ X ∖ at X as ∇V. The covariant 

derivative has the usual properties of the directional 

derivative, for example, linearity 
1 2, ( ) {0}XV V T∈ X ∖ , 

1 2, 0α α ∈ℝ∖  for 
1 1 2 2 0 :V Vα α+ ≠  

 

1 1 2 2 1 21 2V V V Vα α α α+∇ = ∇ + ∇  

 

Quadratic Forms and Ricci Curvature 

In this study, it is assumed that the metric tensor of 

the manifold X  is generated by embedding at multi-

dimensional space p
ℝ . This means that the scalar 

product of vectors , ( )XV W T∈ X  is the restriction of the 

scalar product of p
ℝ  on ( )XT X , that is, in an 

orthonormal basis is expressed by a bilinear form 

( , ) T

XI V W V W= . The first quadratic form of manifold 

is the length of the vectors of the tangent space and 

allows to calculate the lengths of curves:  
 

( , ) .T

XI V V V V=  

 
We write down the coordinates of the vector in the 

basis induced by parameterization ( , )fB : 

 

( )
( )

1

1

( )

( )

, ( ) ( ) ( )

( ) ( ) ( )

f V

q T T

V V f f f

c T T

X v v f f v

b f X

V J b

J b J b J b V

I J b J b

α

α α

α α α

−

−

=
=

∈ =

=

ℝ
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The second bilinear form shows the orthogonal to the 

tangent space component change of vectors from the 

tangent space along different directions , ( )
X

V W T∈ X . 

We write the expression of the second bilinear form 

( , )XII V W  in the basis, given parameterization ( , )fB  

and point X = f(b): 

 
2

, ,

, 1

( )
( , ) ( )

q

X V i W j

i j i j

f b
II V W X

b b
π α α⊥

=

∂
= ⋅

∂ ∂∑   (22) 

 

where, ,1 ,( , , )T

V V V qα α α= …  and ,1 ,( , , )T

W W W qα α α= …  are 

coordinates of V and W in the parametric basis, 
2 )

,
( p

i j

f b

b b

∂
∈

∂ ∂
ℝ  ( )( )1

( ) ( ) ( ) ( ) ( )
T T

f f f fX I J b J b J b J bπ
−⊥ = −  is a 

projector on cotangent space ( )( )XT
⊥

X . 

The second fundamental form of IIX(V, V) determines 

the normal curvature of the manifold. 

To determine the Ricci curvature we introduce the 

notation for the Christoffel symbols. Define: 

 

,

( ) 1

2

jl jkkl
ij jk l

i k j l

g gf b g
g

b b b b

 ∂ ∂∂ ∂
= Γ = + −  ∂ ∂ ∂ ∂ 

  (23) 

 

 
,jk lΓ  are called Christoffel symbols of the first kind. 

Let g
ij
 be elements of the inverse matrix ( ) ( )T

F FJ b J b , i.e. 

the elements of the matrix ( ) 1

( ) ( )T

f fJ b J b
−

. The 

Christoffel symbols of the second kind: 

 

,

1

q
i li

jk jk l

l

g
=

Γ = Γ ⋅∑  (24) 

 

Elements of the Ricci curvature tensor are defined as: 

 

1 1

, 1, ,

k kq q
ji k l k lki

ij kl ji jl ki

k lk j

R
b b

i j q

= =

 ∂Γ ∂Γ
= − + Γ Γ − Γ Γ  ∂ ∂ 
= …

∑ ∑   (25) 

 

Let , 1( )q

ij i jR R ==  be the matrix of rank q. For 

( )XTθ ∈ X : ( ) 1

( ) ( ) ( )T T

f f fJ b J b J bθα θ
−

= . Ricci curvature 

in the direction of θ at X: 

 

( , ) T

XRic Rθ θθ θ α α= ⋅ ⋅   (26) 

 

Ricci curvature describes the difference between 

Euclidean volume element and the manifold volume 

element. 

Locally Riemannian Coordinates and Exponential 

Map 

For a small neighborhood of 
0X ∈X  mapping 

( ) :XX V T∈֏ X  ( (1))X f γ= , where 
0: (0) Xγ γ =  and 

(0) V
t

γ∂
=

∂
, defines a one-to-one correspondence 

between the neighborhood of X0 and the neighborhood 

of 0 in 
0
( )XT X . The inverse mapping is called 

exponential and is denoted 
0

exp ( ).XX V=   

In this neighborhood vectors 
0
( )XV T∈ X  are 

coordinates. These coordinates are called locally 

Riemann coordinates. 

 

Note. For the Euclidian space m= ℝX  the 

tangent space is ( ) m

XT = ℝX  and 

0 0exp ( )X V X V= +  for each ( )XV T∈ X  (that 

is, the result is valid for an arbitrary 

neighborhood of X0). 

 

The distance between the points of the manifold in p-

dimensional space and the distance between them in the q-

dimensional Riemannian coordinates are related with 

Lemmas 1 and 2. Lemmas 3 and 4 roughly upper bound the 

second fundamental form and Ricci curvature through a 

fairly smooth parameterization of the manifold. 

We prove these Lemmas: 

Proof of Lemma 3. For an arbitrary point b ∈B  denote 

by 
1, , qV V…  orthonormal basis of eigenvectors of 

( ) ( )T

f fJ b J b . Let 
1, , qλ λ… be the corresponding to 

1, , qV V…  eigenvalues. Let 
1

,
q

i i

i

Vθ β
=

= ∑  where 
2

1

1
q

i

i

β
=

=∑ , be 

the coordinates 
( ) ( ) : 1f bTθ θ∈ =X ǁ ǁ  is the basis 

1, , qV V… . 

Using (5): 

 

( )

( )

1

1

1

2 2 2

1

( ) ( ) ( )

( ) ( ) ( ) ;

1 1
; .

T T

f f f

q
T T

f f f i i

i

q

i

i i J

J b J b J b

J b J b J b V

c

θ

θ θ

α θ

β

α β α
λ

−

−

=

=

=

=

= ≤

∑

∑ǁ ǁ ǁ ǁ

  (27) 

 

Using X = f(b) (7), (27): 

 

2

, ,

, 1

2
2

, , 1

, 1

( )
( , ) ( )

( ) 1

q

X i j

i j i j

q

i j H H

i j i j J

f b
X

b b

f b
C C q

b b c

θ θ

θ θ θ

θ θ π α α

α α α

⊥

=

=

∂
= ⋅

∂ ∂

∂
≤ ≤ ⋅ ≤ ⋅ ⋅

∂ ∂

∑

∑

IIǁ ǁ

ǁ ǁ
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The Lemma is proved. 

Proof of Lemma 4. Using (23) and (24) we estimate 

(25) by triangle inequality: 

 

( )

1

1 1

2
2

, , 1, , , , 1, ,

,

1 1

, , 1, ,

| , ,

2 max 2 max

1

2

3
max

2

k kq q
ji k l k lki

ij kl ji jl ki n

k lk j

k

ji l

i j k q j i k q ji

k

q q
jl jki li likl

jk jk l

l l k j l

jl

k l j q

R X X
b b

q q
b

g gg
g g

b b b

gq

b

= =

= … = …

= =

= …

 ∂Γ ∂Γ
= − + Γ Γ − Γ Γ  ∂ ∂ 

∂Γ
≤ ⋅ + ⋅ Γ

∂

 ∂ ∂∂
Γ = Γ = + −  ∂ ∂ ∂ 

∂
≤ ⋅

∂

∑ ∑

∑ ∑

…

1 11 1

1 1

, 1, ,

2

, 1, , 1, ,

, 1, ,

,

,

1 , 1

, ,

max

( ) ( )
,

( ) ( )
2 max max

2 ;max 1/

max

kl

k l q

k

j ljl

k k

j k q j q

j k j

kl

H J k l q J

k q q
l iji jk l ll i ili

jk l

l l ik k k

j k l

g

f b f b

b bg

b b

f b f b

b b b

C C g c

g
g g g

b b b

q

= …

= … = …

= …

= =

=

⋅

 ∂ ∂
∂  ∂ ∂∂  =

∂ ∂

∂ ∂
≤ ⋅ ⋅

∂ ∂ ∂

≤ ⋅ ⋅ ≤

∂∂Γ ∂Γ
= − Γ ⋅

∂ ∂ ∂

≤ ⋅

∑ ∑

( )

,

1, , , 1, ,

2
3

, , 1, , , , 1, ,

, , 1, ,

, 3

, , 1, ,

2

,

, , , 1, ,

max

max max

max

/ max 2 /

( ) ( )
,

3 / 2 max

3 m

jk l kl

q k l q

k

kl

j k l q jk l k l q

jl

j l k q

k

jk l

J j k l q H J J

k

j ljk l

i j k m q

k k m

g
b

q g

g

b

q c q C C c
b

f b f b

b b

b b b

… = …

= … = …

= …

= …

= …

∂Γ
⋅

∂

+ ⋅ Γ ⋅

∂

∂

∂Γ
≤ ⋅ + ⋅ ⋅

∂

 ∂ ∂∂   ∂ ∂∂Γ  ≤ ⋅
∂ ∂ ∂

≤ ⋅ ( )

2

2

, , , 1, ,

( ) ( )
,

ax 3
j k l

i j k m q H T J

m

f b f b

b b b
C C C

b
= …

 ∂ ∂
∂  ∂ ∂ ∂  ≤ ⋅ + ⋅

∂

 

 

So: 

 
2

2 4 2| | 2 18 4
H T J JJ

ij H H

J JJ

C C C CC
R q q C C

c cc

 +
≤ ⋅ + ⋅ ⋅ + ⋅  

 
 

 Using (26) and (27):  
 

2

, 1, , 1

2

3 5 2

3/2

( , ) max | |

2 18 4 /

T

X i j q ij

H T J JJ
H H J

J J J

Ric R R

C C C CC
q q C C c

c c c

θ θ θθ θ α α α= …= ⋅ ⋅ ≤ ⋅

 +
≤ ⋅ + ⋅ ⋅ + ⋅  

 

ǁ ǁ ǁ ǁ ǁ ǁ

 

 
The Lemma is proved. 

Appendix B. Lemmas Proofs 

In this section, Lemmas used in the proof of the main 
theorems are listed and proved. 

De Moivre-Laplace for Slowly Decreasing Success 

Probability 

We prove local and integral de Moivre-Laplace 
lemmas for slowly tending to zero success parameter.  

Proof of Lemma 5. The proof almost repeats the 

proof of the local limit theorem from Shiryayev 

(1984) and essentially uses the Stirling formula 

( )! 2 1 ( ) ,n nn n e n R nπ −= ⋅ ⋅ +  where 

2 3 4

1 1 139 1
( ) ( )

12 288 51840
R n O

n n n n
= + − +  and 

1 1
( ) , 1

12 13
R n n

n n
> > ≥  could be written via Bernoulli 

numbers. We will omit subscript n in pn и qn for 

convenience. 

For , ,n k n k→ ∞ → ∞ − → ∞ : 

 

( )

!

!( )!

2

2 2 ( ) ( )

1 1

12 1

k

n

n n

k k n k n k

k n k

n
C

k n k

n e n

k n k e k e n k

r

k kk k
n

n nn n

π
π π

π

−

− − − −

−

=
−

⋅
=

⋅ − ⋅ ⋅ −

+
= ⋅

     −⋅ −          

 

 
Where: 
 

1 ( )
( , , )

(1 ( ))(1 ( ))

R n
r r n k n k

R k R n k

+
= − =

+ + −
 

 
Estimate r for k > 1, n-k>1: 

 

1 ( ) 1 1
1 1 1

(1 ( ))(1 ( )) 13 12

1 1 1
1 1

12( ) 12 12( )

1 1
| |

12 12( )

R n

R k R n k n k

n k k n k

r
k n k

+    > > + −   + + −    

 
⋅ − > − − − − 

≤ +
−

 

 
So: 
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1 (1 )
( ) (1 )

12 1

k n k
k k n k

n k n k

p p
p k C p q r

k kk k
n

n nn n
π

−
−

−

−
= = ⋅ ⋅ +

     −−     
    

 

 

 Denote ˆ ˆ ˆ, 1
k

p q p
n

= = − . ˆ ˆp p q q− = −  because of 

ˆ ˆ 1p q p q+ = + = . Also, 
ˆp p

p

−
 and 

ˆ ˆq q p p

q q

− −
= −  are 

small parameters as 
ˆp p np k

pq npq

− −
=  is small from the 

lemmas assumptions and 0 , 1p q< < . So: 

 

1 1
( ) (1 )

ˆ ˆ1ˆ ˆ2 (1 )

1 1
exp ln ( )ln (1 )

ˆ ˆ1ˆ ˆ2 (1 )

1
ˆ ˆexp ln ln (1 )

ˆ ˆˆ ˆ2 (1 )

ˆ ˆ1
exp 1 ln 1

ˆ ˆ2 (1 )
( (

k n k

n k

p p
p k r

p pnp p

p p
k n k r

p pnp p

p q
n p q r

p qnp p

p p p p
n p

p pnp p

π

π

π

π

−

−

   −
= ⋅ +   −−    

 −
= + − ⋅ + −−  

  
= ⋅ + ⋅ +   −   

  − −
= − ⋅ ⋅ + + 

−  

ˆ ˆ
1 ln 1 (1 )))p p p p

q r
q q


 
 

   − −
+ ⋅ − − ⋅ +   

   

 

 

We use an expansion in Taylor's formula with the 

remainder term in the Lagrange form: 

 

( )

( )

2

2

3

2

2

3

ˆ ˆ ˆ ˆ1
1 ln 1

2

ˆ1 1 1

2 3 1

ˆ ˆ ˆ ˆ1
1 ln 1

2

ˆ1 1 1

2 3 1

p

q

p p p p p p p p

p p p p

p p

p

p p p p p p p p

q q q q

p p

q

δ

δ

     − − − −
+ + = − + ⋅     

     
   − + − ⋅ ⋅     + 

     − − − −
− − = + ⋅     

     
   − + − + ⋅ ⋅     − 

 

 

( )

( )

3
2

2 2

3

2 2

ˆ ˆ ˆ ˆ
1 ln 1 1 ln 1

ˆ1 1 1 1 1 1 ( )
ˆ( )

2 2 3 1

ˆ1 1 1 ( )

2 3 1

p

q

p p p p p p p p
p q

p p q q

p p
p p

p q p

p p

q

δ

δ

       − − − −
+ + + − −       

       
   − = + − + − ⋅ ⋅     + 

  − + − + ⋅ ⋅
 − 

 

where, 
ˆ ˆ

min{0, },max{0, }p

p p p p

p p
δ

 − −
∈  

 
 and 

ˆ ˆ
min{0, },max{0, } .q

p p p p

q q
δ

 − −
∈  

 
 Also 

1 1 1p q

p q pq pq

+
+ = =  and 

2 2
21 1 ( )

ˆ( ) .
2 2 2

n n k k np
p p p

p q pq n npq

  − + − = − =   
  

  

 
So: 

 
2 2( )

2 2

n k k np
p

pq n npq

− − = 
 

 

 
We get: 

 
21 ( )

( ) exp (1 ( , , ))
22

k np
p k r n k n k

npqnpqπ
 −

= − ⋅ + − 
 

ɶ  

 
Where: 
 

( )

( )

2

3 3

22 2

1 ( , , ) (1 ( , , ))

1 1 1
exp

2 3 1

ˆ ˆ( ) 1 1 1 ( ) (1 )

ˆ ˆ2 3 (1 )1

( (

))

p

q

r n k n k r n k n k

n

p p p p p p

p q p p

δ

δ

+ − = + −

 
 ⋅ − ⋅ − ⋅
 + 
 − − − ⋅ + − + ⋅ ⋅
  −− 

ɶ

 

 
Finally, sup | ( , , ) | 0,r n k n k n− → → ∞ɶ  for 

2/3:| | /( ) 0k k np npq− → . 

The Lemma is proved. 

Proof of Lemma 6. Let a b∞ < ≤ < ∞  

( , ] ( ),n n n n n

a z b

P a b P np z np q
< ≤

= +∑  where the sum is over 

such z that n n nnp z np q+  is an integer. From Lemma 5 

for each tk such that n k n nk np t np q= +  and | |kt T≤ < ∞ : 

 

( )2( ) exp / 2 (1 ( , ))
2

k
n n k n n k k

P np t np q t t n
δ ε

π
+ = − +  

 

where, 
| |

sup | ( , ) | 0,
k

k
t T

t n nε
≤

→ → ∞  and 
1

k

n nnp q
δ = . 

So for the fixed a and b such that 

,T a b T T− ≤ ≤ ≤ ≤ ∞ : 

 

( )

( ) ( )

( )

2 2

2 (1) (2)

exp / 2 ( , ) exp / 2
2 2

1
exp / 2 ( , ) ( , )

2

k

k k

n k

a t b

k k
k k k

a t b a t b

b

n n
a

P np t npq

t t n t

z dx R a b R a b

δ δε
π π

π

< ≤

< ≤ < ≤

+

= − + −

= − + +

∑

∑ ∑

∫
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Where: 
 

( )

( )

( )

(1) 2

2

(2 ) 2

( , ) exp / 2
2

1
exp / 2 ;

2

( , ) ( , ) exp / 2 .
2

k

k

k
n k

a t b

b

a

k
n k k

a t b

R a b t

z dx

R a b t n t

δ
π

π
δ

ε
π

< ≤

< ≤

= −

− −

= −

∑

∫

∑

 

 
From the properties of the integral sums 

(1)sup | ( , ) | 0, .n
T a b b

R a b n
− ≤ ≤ ≤

→ → ∞  

Given the non-negativity of the integrand: 
 

( ) ( )2 21 1
exp / 2 exp / 2

22

T

T
z dz z dx

ππ

∞

− −∞
− ≤ −∫ ∫  

 
That is: 

 

( )

(2)

| |

2 (1)

sup | ( , ) | sup | ( , ) |

1
exp / 2 sup | ( , ) | 0

2

k

n k
T a b T t T

T

n
T T a b T

R a b t n

z dz R a b

ε

π

− ≤ ≤ ≤ ≤

− − ≤ ≤ ≤

≤

 
⋅ − + → 
 ∫

 

 

Denote ( )21
( ) exp / 2 .

2

z

z t dt
π −∞

Φ = −∫  Get: 

 
sup | ( , ] ( ( ) ( )) | 0, .n

T a b T

P a b b a n
− ≤ ≤ ≤

− Φ − Φ → → ∞  (28) 

 

Now for T = ∝: 0 ( ) 0T Tε ε∀ > ∃ = >  

( )21
exp / 2 1

42

T

T
z dz

ε
π −

− > −∫ . 

 
From (28): 

 

: : sup | ( , ] ( ( ) ( )) |
4

n
T a b T

N n N P a b b a
ε

− ≤ ≤ ≤
∃ ∀ > − Φ − Φ <  

 

So ( , ] 1
2

 ,nP T T
ε

− > − ( , ] [ , ) ,
2

n nP T P T
ε

−∞ − + ∞ <  where 

( , ] lim ( , ]
n n

S
P T P S T

→−∞
−∞ − = −  и ( , ) lim [ , )

n n
S

P T P T S
→−∞

∞ = . 

Finally :T T a b∀ − ∞ ≤ − ≤ ≤ ≤ ∞ : 

 

2

2

2

2

2

2

1
( , ] exp( / 2)

2

1
( , ] exp( / 2)

2

1
( , ] exp( / 2)

2

1
( , ] exp( / 2) ( , ]

42

1
exp( / 2) ( , )

2

1
exp( / 2) .

4 2 8 82

b

n
a

T

n
T

T

n
a

b

n n
T

T

n

T

P a b z dz

P T T z dz

P a T z dz

P T b z dz P T

z dz P T

z dz

π

π

π
ε

π

π
ε ε ε ε

ε
π

−

−

−

−∞

∞

− −

≤ − − −

+ − − −

+ − − ≤ + −∞ −

+ − + ∞

+ − ≤ + + + =

∫

∫

∫

∫

∫

∫

 

That is ( , ] ( ) ( )nP a b b b→ Φ − Φ  for all a b−∞ ≤ < ≤ ∞ . 

The Lemma is proved. 

The Probability of Large Deviations for Bounded 

Random Variables 

Theorem 6. (from Petrov (1987)). Let x1,…,xn be 

independent random variables, 0kχ =E , 

2 2 , 1, ,
k k

k nσ χ= < ∞ = …E , 2

1

n

k

k

B σ
=

= ∑  . Let 0H >  be such 

constant that 2 2!
| | , 1, ,

2

m m

k k

m
H k nχ σ −≤ ⋅ ⋅ = …E  for all 

integer 2m ≥ . Let 
1

n

k

k

S χ
=

= ∑  then for 0 /x B H≤ ≤ : 

 
2

2

( ) exp( / 4 )

( ) exp( / 4 )

P S x x B

P S x x B

≥ ≤ −

≤ − ≤ −
 

 

and for /x B H≥ : 

 

( ) exp( / 4 )

( ) exp( / 4 )

P S x x H

P S x x H

≥ ≤ −
≤ − ≤ −

 

 
We prove the lemma about the probability of large 

deviations for bounded random variables: 
Proof of Lemma 7. Modify: 

 

1 1

1 1

1 1
( ) ( )

1 1
( ) ( )

n n

k k k k k k

k k

n n

k k k k

k k

m m
n n

m
n n

χ χ χ χ χ

χ χ χ

= =

= =

= − = − + −

= − + −

∑ ∑

∑ ∑

E E

E E

 

 

For the first sum multiplied by t, we use Theorem 6. 

To do this, check the conditions of the theorem:  

 

2 2

2 2

2 2 2 2

( ) 0

( )

( )

!

2

k k

k k

mm

k k k k

m

k k

m m

C

m
C C

χ χ

χ χ σ

χ χ χ χ

χ χ

σ σ

−

− −

− =

− = < ∞

− ≤ −

≤ − ⋅

≤ ⋅ ≤

E E

E E

E E E E

E E

 

 

Thus, the conditions of Theorem 6 fulfilled for 2H C≥ . 

For 
1 1, , n nχ χ χ χ− … −E E  using 

1

1
( )

n

k k

k

m
n

χ χ χ
=

− − ≤∑ E  we 

get the result. The Lemma is proved. 

Integration Area Replacement 

Proof of Lemma 8. We transform difference of 

considered in the lemma integrals for 
1

( )c
ε <

X
: 
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( ) ( )

( ) ( )

( ) ( )

( , ) ( ) ( , ) ( )

( , ) ( )

( , ) ( ).

B X B X

B X B X

B X B X

g X X dV X g X X dV X

g X X dV X

g X X dV X

ε ε

ε ε

ε ε

−

=

−

∫ ∫
∫
∫

ɶ

ɶ

ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

∖

∖

 

 
From Lemma 1 follows that each element from 

( ) ( )B X B Xε ε∆ ɶ  is not far from ( )B Xε
ɶ  as 

31
( , )

24 X
ε θ θ ε= II ɶ

ɶ ɶɶ ǁ ǁ  for some X ∈ɶ X  and 

( ) : 1
X

Tθ θ∈ =ɶ
ɶ X ǁ ǁ . From Lemma 3: 31

24
IICε ε≤ɶ . 

For ( )24 ( 2 1)
: 2

max{1, }

q
q q

IIC
ε ε ε ε⋅ −

≤ + ≤ ⋅ɶ . 

For ( )21
:1 2

2
Ric

Ric

C
C

ε ε ε≤ + + ≤ɶ .  

Using Lemmas 2 and 4: 
 

( ) ( )( )
( )

( )

( ) ( )

( ) ( )

( ) ( )

2

,

2

,

1
1

0

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

sup | ( , ) | 1 ( )

sup | ( , ) | 2 1 4

2

B X B X

B X B X

q q

q

Ric
X X

q Ric
X X

q
m q m

m

q

g X X dV X g X X dV X

g X X dV X g X X dV X

V

g X X C

V g X X C

V

ε ε

ε ε ε ε

ε ε ε ε

ε ε

ε ε

ε ε ε ε

+ −

−
− −

=

−

≤ −

≤ + − − ⋅

⋅ ⋅ + + ⋅

≤ ⋅ ⋅ ⋅ + ⋅ ⋅

⋅ ⋅ + ⋅ −

≤ ⋅

∫ ∫

∫ ∫

∑

ɶ ɶ

ɶ

ɶ ɶ

ɶ

ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

ɶɶ

ɶ ɶ

( ) ( )

( )

1 2

,

2 2 2

,

2

,

sup | ( , ) | 1 4

1
2 1 1 4 sup | ( , ) |

24

8 sup | ( , ) |

q

Ric
X X

q

q

q II Ric
X X

q

q
X X

g X X q C

V C C g X X

V g X X

ε ε ε ε

ε ε ε

ε

−

+

+

⋅ ⋅ ⋅ ⋅ + + ⋅ ⋅

 ≤ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ 
 

≤ ⋅ ⋅ ⋅

ɶ

ɶ

ɶ

ɶ ɶ ɶ

ɶ

ɶ

 

 
The Lemma is proved. 

Finite Nets 

Lemma 10. For each δ exists finite δ-net on a manifold 

X  with 
2

p

a p

δ
 
  
 

 or fewer elements, where a > 0 is an 

edge of circumscribed p-dimensional hypercube. 

Proof. Thus p⊂ ℝX  is bounded it could be placed 

into a hypercube Ca with edge a > 0. Let δ > 0 be a fixed 

number. Consider a uniform grid G(δ) for the cube with 

the distances between points along each edge at most 

/ pδ . The number of points in the grid does not exceed 
p

a p

δ
 
  
 

. Cube Ca is divided by net G(δ) into small 

cubes with edges not exceeding / pδ . 

Therefore for every point Z of the cube G(δ) the 
distance between the and does not exceed the length 
of the diagonal of the small cube, which it belongs to: 
 

2

1

( , ( ))
p

k

d Z G
p

δδ δ
=

≤ =∑  

 

where, ( , ) inf
Z A

d Z A Z Z
′∈

′= −ǁ ǁ  is a distance between point 

pZ ∈ℝ  and set pA ⊂ ℝ .  

Therefore on a manifold G(δ) for every point X ∈X  

contains a point distant from it by no more than δ. But 

( )G δ ⊂/ X . 

Denote the ball with center X and radius δ as Bδ (X). 

Denote ( )G δɶ : For each point ( / 2),X G δ∈  if 

/ 2
( ) ( )B X B Xδ δ= ∩ ≠ ∅ɶ X , we get Xɶ  from Bδ

ɶ  and add it 

to ( )G δɶ . The set ( )G δɶ  is a δ-net for X  and contains not 

more than 
2

p

a p

δ

 
  
 

 points. The Lemma is proved. 

We prove the lemma about the joint occurrence of 

events system: 

 

Lemma 11. Let each of the events A1, dots, AM occurs 

with a probability of not less than p. Then they all come 

together with a probability of at least 

1
( ) 1 (1 )M

m m
P A M p=∩ ≥ − ⋅ − . 

 

Proof. Let A  be the complement of a Borel set A to 

the set of elementary events. Transform: 

 

1 1 1 1

1

1

; ( ) ( )

1 ( ) 1 ( ) 1 (1 )

M M M M

m m m m m m m m

M
M

m m m

m

A A P A P A

P A P A M p

= = = =

=
=

∩ ⊂ ∩ ∩ ≥ ∩

= − ∩ ≥ − ≥ − ⋅ −∑
 

 

The Lemma is proved. 
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