### Article

## Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models

We study integrable models solvable by the nested algebraic Bethe ansatz and described by gl(2|1) or gl(1|2) superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t–J model.

We study the extended prepotentials for the S-duality class of quiver gauge theories, considering them as quasiclassical tau-functions, depending on gauge theory condensates and bare couplings. The residue formulas for the third derivatives of extended prepotentials are proven, which lead to effective way of their computation, as expansion in the weak-coupling regime. We discuss also the differential equations, following from the residue formulas, including the WDVV equations, proven to be valid for the SU(2) quiver gauge theories. As a particular example we consider the constrained conformal quiver gauge theory, corresponding to the Zamolodchikov conformal blocks by 4d/2d duality. In this case part of the found differential equations turn into nontrivial relations for the period matrices of hyperelliptic curves.

We have measured beam-spin asymmetries to extract the sinϕ moment AsinϕLU from the hard exclusive ep→e′nπ+ reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The A^sinϕ_{LU} moment has been measured up to 6.6 GeV^2 in −t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time. The experimental results in very forward kinematics demonstrate the sensitivity to chiral-odd and chiral-even GPDs. In very backward kinematics where the TDA framework is applicable, we found A^sinϕ_LU to be negative, while a sign change was observed near 90° in the center of mass. The unique results presented in this Letter will provide critical constraints to establish reaction mechanisms that can help to further develop the GPD and TDA frameworks.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.