• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Critical Dimension in Semiparametric Bernstein – von Mises Theorem

Proceedings of the Steklov Institute of Mathematics. 2014. Vol. 287. No. 1. P. 232-255.

The classical parametric and semiparametric Bernstein-von Mises (BvM) results are reconsidered in a nonclassical setup allowing finite samples and model misspecification. In the parametric case and in the case of a finite-dimensional nuisance parameter, we establish an upper bound on the error of Gaussian approximation of the posterior distribution of the target parameter; the bound depends explicitly on the dimension of the full and target parameters and on the sample size. This helps to identify the so-called critical dimension p n of the full parameter for which the BvM result is applicable. In the important special i.i.d. case, we show that the condition “p^3 /n is small” is sufficient for the BvM result to be valid under general assumptions on the model. We also provide an example of a model with the phase transition effect: the statement of the BvM theorem fails when the dimension p approaches n^{1/3}.