### Article

## A characterization of maximin tests for two composite hypotheses

We consider the problem of testing two composite hypotheses in the minimax setting. To find maximin tests, we propose a new dual optimization problem which has a solution under a mild additional assumption. This allows us to characterize maximin tests in considerable generality. We give a simple example where the null hypothesis and the alternative are strictly separated, however, a maximin test is purely randomized.

In this paper, we consider a large class of hierarchical congestion population games. One can show that the equilibrium in a game of such type can be described as a minimum point in a properly constructed multi-level convex optimization problem. We propose a fast primal-dual composite gradient method and apply it to the problem, which is dual to the problem describing the equilibrium in the considered class of games. We prove that this method allows to find an approximate solution of the initial problem without increasing the complexity.

In this paper, we consider the single-machine scheduling problem with given release dates and the objective to minimize the maximum penalty which is NP-hard in the strong sense. For this problem, we introduce a dual and an inverse problem and show that both these problems can be solved in polynomial time. Since the dual problem gives a lower bound on the optimal objective function value of the original problem, we use the optimal function value of a sub-problem of the dual problem in a branch and bound algorithm for the original single-machine scheduling problem. We present some initial computational results for instances with up to 20 jobs.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.