### Article

## О квантовании перемычек в уравнении, моделирующем эффект Джозефсона

We study a two-parameter family of nonautonomous ordinary differential equations

on the 2-torus. This family models the Josephson effect in superconductivity. We study its rotation

number as a function of the parameters and the Arnold tongues (also known as the phase

locking domains) defined as the level sets of the rotation number that have nonempty interior.

The Arnold tongues of this family of equations have a number of nontypical properties: they exist

only for integer values of the rotation number, and the boundaries of the tongues are given by

analytic curves. (These results were obtained by Buchstaber–Karpov–Tertychnyi and Ilyashenko–

Ryzhov–Filimonov.) The tongue width is zero at the points of intersection of the boundary curves,

which results in adjacency points. Numerical experiments and theoretical studies carried out by

Buchstaber–Karpov–Tertychnyi and Klimenko–Romaskevich show that each Arnold tongue forms

an infinite chain of adjacent domains separated by adjacency points and going to infinity in an

asymptotically vertical direction. Recent numerical experiments have also shown that for each

Arnold tongue all of its adjacency points lie on one and the same vertical line with integer abscissa

equal to the corresponding rotation number. In the present paper, we prove this fact for an open set

of two-parameter families of equations in question. In the general case, we prove a weaker claim: the

abscissa of each adjacency point is an integer, has the same sign as the rotation number, and does

not exceed the latter in absolute value. The proof is based on the representation of the differential

equations in question as projectivizations of linear differential equations on the Riemann sphere

and the classical theory of linear equations with complex time.

We study possible one-end finitely presented subgroups of , acting without finite orbits. Our main result, theorem 1, establishes that any such action possesses the so-called property (), that allows one to make distortion-controlled expansion and is thus sufficient to conclude that the action is Lebesgue-ergodic. We also propose a path towards full characterization of such actions (conjectures 3–5).

A three-parametrical family of ODEs on a torus arises from a model of Josephson effect in a resistive case when a Josephson junction is biased by a sinusoidal microwave current. We study asymptotics of Arnold tongues of this family on the parametric plane (the third parameter is fixed) and prove that the boundaries of the tongues are asymptotically close to Bessel functions.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

In order to model the processes taking place in systems with Josephson contacts, a differential equation on a torus with three parameters is used. One of the parameters of the system can be considered small and the methods of the fast-slow systems theory can be applied. The properties of the phase-lock areas – the subsets in the parameter space, in which the changing of a current doesn’t affect the voltage — are important in practical applications. The phaselock areas coincide with the Arnold tongues of a Poincare map along the period. A description of the limit properties of Arnold tongues is given. It is shown that the parameter space is split into certain areas, where the tongues have different geometrical structures due to fastslow effects. An efficient algorithm for the calculation of tongue borders is elaborated. The statement concerning the asymptotic approximation of borders by Bessel functions is proven.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.