### Article

## Islands of Stability in Motif Distributions of Random Networks

We consider random nondirected networks subject to dynamics conserving vertex degrees and study, analytically and numerically, equilibrium three-vertex motif distributions in the presence of an external field h coupled to one of the motifs. For small h, the numerics is well described by the “chemical kinetics” for the concentrations of motifs based on the law of mass action. For larger h, a transition into some trapped motif state occurs in Erdős-Rényi networks. We explain the existence of the transition by employing the notion of the entropy of the motif distribution and describe it in terms of a phenomenological Landau-type theory with a nonzero cubic term. A localization transition should always occur if the entropy function is nonconvex. We conjecture that this phenomenon is the origin of the motifs’ pattern formation in real evolutionary networks.

In this article, we show numerically the strong finite-size effects in exponential random graphs. Particularly, for the two-star model above the critical value of the chemical potential for triplets a ground state is a star-like graph with the finite set of hubs at network density p<0.5p<0.5 or as the single cluster at p>0.5p>0.5. We find that there exists the critical value of number of nodes N∗(p)N∗(p) when the ground state undergoes clear-cut crossover. At N>N∗(p),N>N∗(p), the network flows via a cluster evaporation to the state involving the small star in the Erdős–Rényi environment. The similar evaporation of the cluster takes place at N>N∗(p)N>N∗(p) in the Strauss model. We suggest that the entropic trap mechanism is relevant for microscopic mechanism behind the crossover regime.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.