Глава
Process Model Discovery: A Method Based on Transition System Decomposition
В книге

BPM 2013 was the 11th conference in a series that provides a prestigious forum for researchers and practitioners in the field of business process management (BPM). The conference was organized by Tsinghua University, China, and took place during August 26–30, 2013, in Beijing, China. Compared to previous editions of BPM, this year we noted a lower focus by authors on topics like process modeling, while we also observed a considerable growth of submissions regarding areas like process mining, conformance/compliance checking, and process model matching. The integrated consideration of processes and data remains popular, and novel viewpoints focus, among others, on data completeness in business processes, the modeling and runtime support of event streaming in business processes, and business process architectures.
Работа посвящена моделированию сервисов с помощью модулей потоков работ, которые представляют собой специальный подкласс сетей Петри. Проблема совместимости сервисов состоит в проверке того, что два Веб-сервиса подходят друг другу, т.е. что их композиция является бездефектной. Исследуется задача проверки комплиментарности ресурсов производимых/потребляемых сервисами, что является необходимым условием совместимости сервисов. Ресурсы, производимые/потребляемые сервисами, описываются как языки мультимножеств. В работе определена алгебра языков мультимножеств и приведен алгоритм проверки совместимости ресурсов для двух структурированных модулей потоков работ.
This book constitutes the proceedings of the 37th International Conference on Application and Theory of Petri Nets and Concurrency, PETRI NETS 2016, held in Toruń, Poland, in June 2016. Petri Nets 2016 was co-located with the Application of Concurrency to System Design Conference, ACSD 2016. The 16 papers including 3 tool papers with 4 invited talks presented together in this volume were carefully reviewed and selected from 42 submissions. Papers presenting original research on application or theory of Petri nets, as well as contributions addressing topics relevant to the general field of distributed and concurrent systems are presented within this volume.
These are the proceedings of the International Workshop on Petri Nets and Software Engineering (PNSE’13) and the International Workshop on Modeling and Business Environments (ModBE’13) in Milano, Italy, June 24–25, 2013. These are co-located events of Petri Nets 2013, the 34th international conference on Applications and Theory of Petri Nets and Concurrency.
PNSE'13 presents the use of Petri Nets (P/T-Nets, Coloured Petri Nets and extensions) in the formal process of software engineering, covering modelling, validation, and verification, as well as their application and tools supporting the disciplines mentioned above.
ModBE’13 provides a forum for researchers from interested communities to investigate, experience, compare, contrast and discuss solutions for modeling in business environments with Petri nets and other modeling techniques.
Recent breakthroughs in process mining research make it possible to discover, analyze, and improve business processes based on event data. The growth of event data provides many opportunities but also imposes new challenges. Process mining is typically done for an isolated well-defined process in steady-state. However, the boundaries of a process may be fluid and there is a need to continuously view event data from different angles. This paper proposes the notion of process cubes where events and process models are organized using different dimensions. Each cell in the process cube corresponds to a set of events and can be used to discover a process model, to check conformance with respect to some process model, or to discover bottlenecks. The idea is related to the well-known OLAP (Online Analytical Processing) data cubes and associated operations such as slice, dice, roll-up, and drill-down. However, there are also significant differences because of the process-related nature of event data. For example, process discovery based on events is incomparable to computing the average or sum over a set of numerical values. Moreover, dimensions related to process instances (e.g. cases are split into gold and silver customers), subprocesses (e.g. acquisition versus delivery), organizational entities (e.g. backoffice versus frontoffice), and time (e.g., 2010, 2011, 2012, and 2013) are semantically different and it is challenging to slice, dice, roll-up, and drill-down process mining results efficiently.