• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Gaining insight in social networks with biclustering and triclustering

Lecture Notes in Business Information Processing. 2012. Vol. 128 LNBIP. P. 162-171.
Gnatyshak D. V., Ignatov D. I., Semenov A.

We combine bi- and triclustering to analyse data collected from the Russian online social network Vkontakte. Using biclustering we extract groups of users with similar interests and find communities of users which belong to similar groups. With triclustering we reveal users' interests as tags and use them to describe Vkontakte groups. After this social tagging process we can recommend to a particular user relevant groups to join or new friends from interesting groups which have a similar taste. We present some preliminary results and explain how we are going to apply these methods on massive data repositories.