Статья
ML-assisted versatile approach to Calorimeter R&D
We present a model for freight train time prediction based on station network analysis and specific feature engineering. We discuss the first pipeline to improve the freight flight duration prediction in Russia. While every freight company use only reference book made by RZD (Russian Railways) based on railroad distances with accuracy measured in days, we argue that one could predict the flight duration with error less than twenty hours while decreasing error to twelve hours for certain type of freight trains.
One of the most challenging data analysis tasks of modern High Energy Physics experiments is the identification of particles. In this proceedings we review the new approaches used for particle identification at the LHCb experiment. Machine-Learning based techniques are used to identify the species of charged and neutral particles using several observables obtained by the LHCb sub-detectors. We show the performances of various solutions based on Neural Network and Boosted Decision Tree models.