• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Tunneling conductance of telescopic contacts between graphene layers with and without dielectric spacer

Computational Materials Science. 2015. Vol. 109. P. 240-247.
Lebedeva I. V., Popov A. M., Knizhnik A. A., Yurii E. Lozovik, Poklonski N. A., Siahlo A. I., Vyrko S. A., Ratkevich S. V.

The telescopic contact between graphene layers with a dielectric spacer is considered as a new type of graphene-based nanoelectronic devices. The tunneling current through the contacts with and without an argon spacer is calculated as a function of the overlap length, stacking of the graphene layers and voltage applied using non-equilibrium Green function formalism. A negative differential resistance (similar to semiconductor tunnel diode) is found with the peak to valley ratio up to 10 and up to 2 for the contacts without any spacer and with the argon spacer, respectively. The capacitance of the contacts between the graphene layers with the argon spacer is calculated as a function of temperature taking into account the quantum contribution. The related RC time constant is estimated to be about 3 ps, which allows elaboration of fast-response nanoelectronic devices. The possibility of application of the contacts as memory cells is discussed.