• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Holomorphic Lagrangian Fibrations on Hypercomplex Manifolds

International Mathematics Research Notices. 2015. Vol. 2015. No. 4. P. 981-984.
Soldatenkov A., Verbitsky M.

A hypercomplex manifold is a manifold equipped with a triple of complex structures satisfying the quaternionic relations. A holomorphic Lagrangian variety on a hypercomplex manifold with trivial canonical bundle is a holomorphic subvariety which is calibrated by a form associated with the holomorphic volume form; this notion is a generalization of the usual holomorphic Lagrangian subvarieties known in hyperKähler geometry. An HKT (hyperKähler with torsion) metric on a hypercomplex manifold is a metric determined by a local potential, in a similar way to the Kähler metric. We prove that a base of a holomorphic Lagrangian fibration is always Kähler, if its total space is HKT. This is used to construct new examples of hypercomplex manifolds which do not admit an HKT structure. © The Author(s) 2013.