• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Проверка гипотез при регрессии с нечеткими данными

Вельдяксов В. Н., Шведов А. С.

Регрессионный анализ широко применяется в научных разработках, и нечеткая линейная регрессия является активно развивающейся областью исследований. Это связано с тем, что во многих реальных задачах зависимые или независимые переменные не представляют собой действительные числа. Регрессионные модели с нечеткими данными рассматриваются при различных типах зависимых и независимых переменных.

В настоящей работе изучается модель регрессии yi A + bxi + εii = 1,…,n, где Ax1,…,xn – нечеткие числа; b – действительное число; ε1,…,εny1,…,yn – нечетко-случайные величины.

В предыдущей работе авторов [Вельдяксов, Шведов, 2014] с использованием метода наименьших квадратов построены оценки для коэффициентов A,b. При построении этих оценок используются методы вариационного исчисления. Указанные оценки являются развитием ранее известных оценок, относящихся к случаю, когда A – действительное число.

Основной акцент в работе [Вельдяксов, Шведов, 2014] делается на построении оценки для коэффициента A. Однако получена и некоторая оценка для коэффициента b. В первой части настоящей работы доказывается, что оценка для коэффициента b, полученная в статье [Вельдяксов, Шведов, 2014], обладает свойством несмещенности. При доказательстве существенную роль играет новое определение нечетко-случайных величин из работы [Шведов, 2013].

Во второй части настоящей работы на ряде расчетов проводится сравнение доверительных интервалов для коэффициента b и бутстреп процентных интервалов для этого коэффициента. Установлено, что совпадение длин этих интервалов улучшается при увеличении размера выборки n.

Данный вывод, а также несмещенность оценки для коэффициента b позволяют предложить процедуру проверки гипотезы о конкретном значении для коэффициента b в приведенной регрессионной модели.