Статья
Multilevel classifiers based on a tree-structured set of Gaussian densities
Предлагается обобщённое семейство вероятностных тематических моделей коллекций тек- стовых документов, в котором эвристики регуляризации, сэмплирования, частого обновления параметров, робастности относительно шума и фона могут включаться независимо друг от дру- га в любых сочетаниях, порождая как известные модели PLSA, LDA, CVB0, SWB, так и новые. Показано, что робастная тематическая модель на основе PLSA, разделяющая термины на тема- тические, шумовые и фоновые, не нуждается в регуляризации и обеспечивает разреженность искомых дискретных распределений тем в документах и терминов в темах.
Вероятностная тематическая модель (BTM) строит интерпретируемое представление коллекции текстовых документов, описывая каждый жокумент дискретным распределением на множестве тем, каждую тему - дискретным распределением на множестве терминов. Рассмотрен обобщенный EM-алгоритм с эвристиками сглаживания, сэмплирования, робастности и разрежевания, позволяющий при различных сочетаниях этих эвристик получать как известные тематические модели PLSA (probabilistic latent semantic analysis), LDA (latent Dirichlet allocation), SWB (special words with background), так и новые. Предлагается упрощенный робастный алгоритм, который не требует ни дополнительных вычислительных затрат, ни хранения матрицы параметров шума, и хорошо сочетается с эвристикой разреживания. В экспериментах на двух коллекциях научных публикаций, англоязычной и русскоязычной, подбираются оптимальные сочетания стратегий разреживания и других эвристик. Показывается, что робастная модель без сглаживания позволяет разреживать искомые распределения на 99% без ухудшения качества (перплексии) модели.
В данной работе рассматривается пятое уравнение Пенлеве. Методами степенной геометрии ищутся асимптотические разложения его решений при x → 0. Получено 27 семейств разложений решений уравнения. 19 из них получены из разложений решений шестого уравнения Пенлеве. Среди остальных 8 семейств одно было известно раньше, ещё одно может быть получено из разложения решения третьего уравнения Пенлеве. Новыми являются 3 семейства полуэкзотических разложений, 2 семейства сложных разложений и семейство степенно-логарифмических разложений.
Труды содержат доклады, представленные учеными из России, Украины, Белоруссии, Казахстана, Эстонии, Узбекистана, Германии, Польши, посвященные актуальным проблемам радиационной физики твердого тела (влияние радиации на физико-химические свойства и структуру металлических, полупроводниковых и диэлектрических материалов, влияние факторов космического пространства на свойства конструкционных и функциональных материалов и покрытий космических аппаратов, радиационно-технологические методы получения материалов, в частности наноматериалов, модифицирования и обработки материалов с целью улучшения их эксплуатационных свойств, создание и получение экологически чистых материалов с низкой наведенной радиоактивностью и др.).
Труды содержат доклады, представленные специалистами из России, Украины, Белорусии, Казахстана, Узбекистана, Германии, Великобритании, Польши по направлениям:«Радиационная физика металлов», «Радиационная физика неметаллических материалов», «Физические основы радиационной технологии» и посвященные разнообразным проблемам радиационной физики твердого тела (процессы прохождения заряженных и нейтральных частиц, рентгеновского и гамма-излучений через вещество, электрон-атомные, атом-атомные, ион-атомные и др. столкновения в твердых телах, ориентационные явления при взаимодействии высокоэнергетических частиц с твердым телом, радиационно-индуцированные и радиационно-стимулированные явления в твердых телах и др.).
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра. Методами степенной геометрии ищутся асимптотические разложения его решений в окрестности его неособой точки z=z0, z0≠0, z0≠∞, при любых значениях параметров уравнения. Показано, что имеется ровно 10 семейств разложений решений уравнения. Все они - по целым степеням локальной переменной z - z0. Из них одно новое; у него произвольный коэффициент при четвертой степени локальной переменной. Одно из семейств однопараметрическое, остальные - двухпараметрические. Доказано, что все разложения сходятся в окрестности (а являющиеся полюсами - в проколотой окрестности) точки z=z0.
В учебном пособии рассматриваются базовые вопросы компьютерной лингвистики: от теории лингвистического и математического моделирования до вариантов технологических решений. Дается лингвистическая интерпретация основных лингвистических объектов и единиц анализа. Приведены сведения, необходимые для создания отдельных подсистем, отвечающих за анализ текстов на естественном языке. Рассматриваются вопросы построения систем классификации и кластеризации текстовых данных, основы фрактальной теории текстовой информации.
Предназначено для студентов и аспирантов высших учебных заведений, работающих в области обработки текстов на естественном языке.
В данной работе рассматривается пятое уравнение Пенлеве, которое имеет 4 комплексных параметра α, β, γ, δ. Методами степенной геометрии ищутся асимптотические разложения его решений при x → ∞. При α≠0 найдено 10 степенных разложений с двумя экспоненциальными добавками каждое. Шесть из них - по целым степеням x (они были известны), и четыре по полуцелым (они новые). При α=0 найдено 4 однопараметрических семейства экспоненциальных асимптотик y(x) и 3 однопараметрических семейства сложных разложений x=x(y). Все экспоненциальные добавки, экспоненциальные асимптотики и сложные разложения найдены впервые. Также уточнена техника вычисления экспоненциальных добавок.