• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

Finite group subschemes of abelian varieties over finite fields

Finite Fields and Their Applications. 2014. Vol. 29. P. 132-150.

Let $A$ be an abelian variety over a finite field $k$. The $k$-isogeny class of $A$ is uniquely determined by the Weil polynomial $f_A$. We assume that $f_A$ is separable. For a given prime number $\ell\neq\ch k$ we give a classification of group schemes $B[\ell]$, where $B$ runs through the isogeny class, in terms of certain Newton polygons associated to $f_A$. As an application we classify zeta functions of Kummer surfaces over $k$.