### Working paper

## Weakly curved A-infinity algebras over a topological local ring

We develop the basic constructions of homological algebra in the (appropriately defined) unbounded derived categories of modules over algebras over coalgebras over noncommutative rings (which we call semialgebras over corings). We define double-sided derived functors SemiTor and SemiExt of the functors of semitensor product and semihomomorphisms, and construct an equivalence between the exotic derived categories of semimodules and semicontramodules. Certain (co)flatness and/or (co)projectivity conditions have to be imposed on the coring and semialgebra to make the module categories abelian (and the cotensor product associative). Besides, for a number of technical reasons we mostly have to assume that the basic ring has a finite homological dimension (no such assumptions about the coring and semialgebra are made). In the final chapters we construct model category structures on the categories of complexes of semi(contra)modules, and develop relative nonhomogeneous Koszul duality theory for filtered semialgebras and quasi-differential corings. Our motivating examples come from the semi-infinite cohomology theory. Comparison with the semi-infinite (co)homology of Tate Lie algebras and graded associative algebras is established in appendices; an application to the correspondence between Tate Harish-Chandra modules with complementary central charges is worked out; and the semi-infinite homology of a locally compact topological group relative to an open profinite subgroup is defined.

The description of algebraic structure of n-fold loop spaces can be done either using the formalism of topological operads, or using variations of Segal’s Γ-spaces. The formalism of topological operads generalises well to different categories yielding such notions as (Formula presented.)-algebras in chain complexes, while the Γ-space approach faces difficulties. In this paper we discuss how, by attempting to extend the Segal approach to arbitrary categoires, one arrives to the problem of understanding “weak” sections of a homotopical Grothendieck fibration. We propose a model for such sections, called derived sections, and study the behaviour of homotopical categories of derived sections under the base change functors. The technology developed for the base-change situation is then applied to a specific class of “resolution” base functors, which are inspired by cellular decompositions of classifying spaces. For resolutions, we prove that the inverse image functor on derived sections is homotopically full and faithful.

We observe that some natural mathematical definitions are lifting properties relative to simplest counterexamples, namely the definitions of surjectivity and injectivity of maps, as well as of being connected, separation axioms T0 and T1 in topology, having dense image, induced (pullback) topology, and every real-valued function being bounded (on a connected domain). We also offer a couple of brief speculations on cognitive and AI aspects of this observation, particularly that in point-set topology some arguments read as diagram chasing computations with finite preorders.

I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.