### Working paper

## Subvarieties of hypercomplex manifolds with holonomy in SL(n,H)

A hypercomplex manifold M is a manifold with a triple I,J,K of complex structure operators satisfying quaternionic relations. For each quaternion L=aI +bJ+cK, L^2=-1, L is also a complex structure operator on M, called an induced complex structure. We are studying compact complex subvarieties of (M,L), when L is a generic induced complex structure. Under additional assumptions (Obata holonomy contained in SL(n,H), existence of an HKT metric), we prove that (M,L) contains no divisors, and all complex subvarieties of codimension 2 are trianalytic (that is, also hypercomplex).

A hypercomplex manifold *M* is a manifold with a triple *I*,*J*,*K* of complex structure operators satisfying quaternionic relations. For each quaternion *L*=*aI*+*bJ*+*cK*, *L*2=−1, *L* is also a complex structure operator on *M*, called *an induced complex structure*. We study compact complex subvarieties of (*M*,*L*), for *L* a generic induced complex structure. Under additional assumptions (Obata holonomy contained in *SL*(*n*,*H*), the existence of an HKT-metric), we prove that (*M*,*L*) contains no divisors, and all complex subvarieties of codimension 2 are trianalytic (that is, also hypercomplex).

A hypercomplex manifold is a manifold equipped with a triple of complex structures satisfying the quaternionic relations. A holomorphic Lagrangian variety on a hypercomplex manifold with trivial canonical bundle is a holomorphic subvariety which is calibrated by a form associated with the holomorphic volume form; this notion is a generalization of the usual holomorphic Lagrangian subvarieties known in hyperkaehler geometry. An HKT (hyperkaehler with torsion) metric on a hypercomplex manifold is a metric determined by a local potential, in a similar way to the Kaehler metric. We prove that a base of a holomorphic Lagrangian fibration is always Kaehler, if its total space is HKT. This is used to construct new examples of hypercomplex manifolds which do not admit an HKT structure.

A Hermitian metric ω on a complex manifold is called SKT or pluriclosed if ddcω=0. Let M be a twistor space of a compact, anti-selfdual Riemannian manifold, admitting a pluriclosed Hermitian metric. We prove that in this case M is Kähler, hence isomorphic to CP3 or a flag space. This result is obtained from rational connectedness of the twistor space, due to F Campana. As an aside, we prove that the moduli space of rational curves on the twistor space of a K3 surface is Stein.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.