### ?

## Underlying varieties and group structures

Cornell University
,
2021.
No. 2105.12861.

Starting with exploration of the possibility to present the underlying variety of an affine algebraic group in the form of a product of some algebraic varieties, we then explore the naturally arising problem as to what extent the group variety of an algebraic group determines its group structure.

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2015. No. 1502.02167.

According to the classical theorem, every irreducible algebraic variety endowed with a nontrivial rational action of a connected linear algebraic group is birationally isomorphic to a product of another algebraic variety and the s-dimensional projectice space with positive s. We show that the classical proof of this theorem actually works only in characteristic 0 and ...

Added: February 10, 2015

Popov V., Известия РАН. Серия математическая 2022 Т. 86 № 5 С. 73–96

We explore to what extent the group variety of a connected algebraic group or the group manifold of a real Lie group determines its group structure. ...

Added: June 9, 2022

V. L. Popov, Mathematical notes 2018 Vol. 103 No. 5 P. 811–819

We prove that the family of all connected n-dimensional real Lie groups is uniformly Jordan for every n. This
implies that all algebraic (not necessarily affine) groups over fields of characteristic zero and some
transformation groups of complex spaces and Riemannian manifolds are Jordan. ...

Added: April 13, 2018

В. Л. Попов, Доклады Российской академии наук. Математика, информатика, процессы управления (ранее - Доклады Академии Наук. Математика) 2021 Т. 500 № 1 С. 52–54

It is explored to which extent the group variety of an algebraic group determines its group structure. ...

Added: November 18, 2021

Arzhantsev I., Celik D., Hausen J., Journal of Algebra 2013 Vol. 387 P. 87–98

Given an action of an affine algebraic group with only trivial characters on a factorial variety, we ask for categorical quotients. We characterize existence in the category of algebraic varieties. Moreover, allowing constructible sets as quotients, we obtain a more general existence result, which, for example, settles the case of afinitely generated algebra of invariants. ...

Added: November 13, 2013

Arzhantsev I., Liendo A., Stasyuk T., Journal of Pure and Applied Algebra 2021 Vol. 225 No. 2 P. 106499

Let X be a normal variety endowed with an algebraic torus action. An additive group action alpha on X is called vertical if a general orbit of alpha is contained in the closure of an orbit of the torus action and the image of the torus normalizes the image of alpha in Aut(X). Our first result in this paper ...

Added: July 29, 2020

Vladimir L. Popov, Transformation Groups 2014 Vol. 19 No. 2 P. 549–568

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given. ...

Added: March 17, 2014

Sheina K., / Cornell University. Series arXiv "math". 2020. No. 04348v1.

The basic automorphism group of a Cartan foliation (M, F) is the quotient group of the automorphism group of (M, F) by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates ...

Added: December 9, 2020

Arzhantsev I., Zaitseva Y., Russian Mathematical Surveys 2022 Vol. 77 No. 4 P. 571–650

We survey recent results on open embeddings of the affine space C^n into a complete algebraic variety X such that the action of the vector group G_a^n on C^n by translations extends to an action of G_a^n on X. We begin with the Hassett–Tschinkel correspondence describing equivariant embeddings of \mathbb{C}^n into projective spaces and present its generalization for embeddings into projective hypersurfaces. Further sections deal with embeddings into flag ...

Added: February 26, 2023

Amerik E., Campana F., / Cornell University library. Series arxiv.org "algebraic geometry". 2013.

This is a note on Beauville's problem (solved by Greb, Lehn and Rollenske in the non-algebraic case and by Hwang and Weiss in general) whether a lagrangian torus on an irreducible holomorphic symplectic manifold is a fiber of a lagrangian fibration. We provide a different, very short solution in the non-algebraic case and make some ...

Added: April 9, 2013

V. L. Popov, Doklady Mathematics 2017 Vol. 96 No. 1 P. 312–314

For connected simple algebraic groups defined over an algebraically closed field of characteristic
zero, the classifications of irreducible algebraic representations of modalities 0, 1, and 2 are obtained. ...

Added: June 30, 2017

Roman Avdeev, Petukhov A., Transformation Groups 2021 Vol. 26 No. 3 P. 719–774

Let G be a symplectic or special orthogonal group, let H be a connected reductive subgroup of G, and let X be a flag variety of G. We classify all triples (G, H, X) such that the natural action of H on X is spherical. For each of these triples, we determine the restrictions to ...

Added: September 2, 2020

Попов В. Л., Известия РАН. Серия математическая 2019 Т. 84 № 4 С. 194–225

The rst group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: July 31, 2019

Р.С. Авдеев, Математические заметки 2013 Т. 94 № 1 С. 22–35

For an arbitrary connected solvable spherical subgroup H of a connected semisimple algebraic group G, we compute the group N_G(H), the normalizer of H in G. Thereby we complete a classification of all (not necessarily connected) solvable spherical subgroups in semisimple algebraic groups. ...

Added: February 25, 2014

V. L. Popov, Izvestiya: Mathematics, England 2019 Vol. 83 No. 4 P. 830–859

The first group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: September 29, 2019

Р.С. Авдеев, Петухов А. В., Математический сборник 2014 Т. 205 № 9 С. 3–48

For every finite-dimensional vector space V and every V-flag variety X we list all connected reductive subgroups in GL(V) acting spherically on X. ...

Added: October 22, 2014

Sheina K., Известия высших учебных заведений. Поволжский регион. Физико-математические науки 2021 Т. 1 № 1 С. 49–65

The basic automorphism group of a Cartan foliation (M,F) is the quotient group of the automorphism group of (M, F ) by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism ...

Added: December 16, 2020

Kharchev S. M., Khoroshkin S. M., Advances in Mathematics 2020 Vol. 375 No. 107368 P. 1–56

We obtain certain Mellin-Barnes integrals which present Whittaker wave functions related to classical real split forms of simple complex Lie groups ...

Added: October 18, 2020

Roman Avdeev, Transformation Groups 2021 Vol. 26 No. 2 P. 403–431

Given a connected reductive complex algebraic group G and a spherical subgroup H⊂G, the extended weight monoid Λˆ+G(G/H) encodes the G-module structures on spaces of regular sections of all G-linearized line bundles on G/H. Assuming that G is semisimple and simply connected and H is specified by a regular embedding in a parabolic subgroup P⊂G, ...

Added: September 9, 2021

Roman Avdeev, Cupit-Foutou S., Advances in Mathematics 2018 Vol. 328 P. 1299–1352

Given a connected reductive algebraic group G and a finitely generated monoid Γ of dominant weights of G, in 2005 Alexeev and Brion constructed a moduli scheme M_Γ for multiplicity-free affine G-varieties with weight monoid Γ. This scheme is equipped with an action of an `adjoint torus' T_ad and has a distinguished T_ad-fixed point X_0. ...

Added: February 25, 2018

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2017. No. 1707.06914 [math.AG].

We classify all connected affine algebraic groups G such that there are only finitely many G-orbits in every algebraic G-variety containing a dense open G-orbit. We also prove that G enjoys this property if and only if every irreducible algebraic G-variety X is modality-regular, i.e., the modality of X (in the sense of V. Arnol’d) ...

Added: July 24, 2017

Ivan V. Arzhantsev, Yulia I. Zaitseva, Kirill V. Shakhmatov, Proceedings of the Steklov Institute of Mathematics 2022 Vol. 318 No. 1 P. 13–25

Let X be an algebraic variety such that the group Aut(X) acts on X transitively. We define the transitivity degree of X as the maximum number m such that the action of Aut(X) on X is m-transitive. If the action of Aut(X) is m-transitive for all m, the transitivity degree is infinite. We compute the transitivity degree for all quasi-affine toric varieties and for many homogeneous spaces of algebraic groups. We also discuss a conjecture and ...

Added: November 5, 2022

Zaitseva Y., Results in Mathematics 2024 Vol. 79 Article 249

We give a classification of noncommutative algebraic monoid structures on normal affine varieties such that the group of invertible elements of the monoid is connected, solvable, and has a one-dimensional unipotent radical. We describe the set of idempotents and the center of such a monoid and give a criterion for existence of the zero element. ...

Added: September 13, 2024

V. L. Popov, Transformation Groups 2011 Vol. 16 No. 3 P. 827–856

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a
closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove
that in arbitrary G such a cross-section exists if and only if the ...

Added: March 16, 2013