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UNDERLYING VARIETIES

AND GROUP STRUCTURES

VLADIMIR L. POPOV

Abstract. Starting with exploration of the possibility to present
the underlying variety of an affine algebraic group in the form of a
product of some algebraic varieties, we then explore the naturally
arising problem as to what extent the group variety of an algebraic
group determines its group structure.

1. Introduction. This paper arose from a short preprint [16] and is
its extensive extension. As starting point of [14] served the question
of B. Kunyavsky [10] about the validity of the statement, which is for-
mulated below as Corollary of Theorem 1. This statement concerns the
possibility to present the underlying variety of a connected reductive
algebraic group in the form of a product of some special algebraic va-
rieties.
Sections 2, 3 make up the content of [16], where the possibility of

such presentations is explored. For some of them, in Theorem 1 is
proved their existence, and in Theorems 2–5, on the contrary, their
non-existence.
Theorem 1 shows that there are non-isomorphic reductive groups

whose underlying varieties are isomorphic. In Sections 4–10, we explore
the problem, naturally arising in connection with this, as to what ex-
tent the underlying variety of an algebraic group determines its group
structure. In Theorems 6–8, it is shown that some group properties
(dimension of unipotent radical, reductivity, solvability, unipotency,
toroidality in the sense of Rosenlicht) are equivalent to certain geomet-
ric properties of the underlying group variety. Theorem 8 generalizes to
solvable groups M. Lazard’s theorem on unipotent groups. In Sections
6, 7, a method for constructing non-isomorphic connected semisimple
groups, which are isomorphic as algebraic varieties, is found, and in
Theorem 11 it is proved that for any connected reductive algebraic
group R, the number of all, considered up to isomorphism, algebraic
groups whose underlying varieties are isomorphic to that of R, is finite.
Generally speaking, this number is greater than 1. It is proved in Theo-
rem 12 that if the group R is simple, then it is equal to 1. The appendix
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contains a finiteness theorem for reductive groups (Theorem 14), the
proof of which provides an upper bound for the specified number.

My thanks go to T. Bandman, V. Gorbatsevich, and Yu. Zarhin who
drew my attention to some related publications.

Conventions and notation

• k is an algebraically closed field, over which all algebraic varieties
considered below are defined.

• Groups are considered in multiplicative notation. The unit element
of a group G is denoted by e (which group is meant will be clear
from the context).

• For groups G and H , the notation G ≃ H means that they are
isomorphic.

• C (G) is the center of a group G.
• D(G) is the derived group of a group G.
• 〈g〉 is the cyclic group generated by g.
• A torus means affine algebraic torus, and a homomorphism of al-
gebraic groups means their algebraic homomorphism.

• Ru(G) is the unipotent radical of an affine algebraic group G.
• G◦ is the identity connected component of an algebraic group or a
Lie group G.

• Lie(G) is the Lie algebra of an algebraic group or a Lie group G.
• Hom(G,H) and Aut(G) are the groups of algebraic homomor-
phisms if G and H are algebraic groups. The character of such
a group G is an element of the group Hom(G,Gm).

• An is the n-dimensional coordinate affine space.
• An

∗
is the product of n copies of the variety A1 \ {0}.

• Let p := char(k) and a ∈ Z. If ap 6= 0, then a′ denotes quotient
of dividing a by the greatest power of p that devides a. If ap = 0,
then a′ := a.

2. Reductive groups with isomorphic underlying varieties. In
this section, we prove the existence of some presentations of underlying
varieties of affine algebraic groups in the form of products of algebraic
varieties, and also the existence of non-isomorphic reductive algebraic
groups that are isomorphic as algebraic varieties.
Let G be a connected reductive algebraic groups. Then

D := D(G) and Z := C (G)◦

are respectively a connected semisimple algebraic group and a torus
(see [5, Sect. 14.2, Prop. (2)]). The algebraic groups D × Z and G are
not always isomorphic; the latter is equivalent to the equality D∩Z =
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{e}, which, in turn, is equivalent to the property that the isogeny of
algebraic groups D × Z → G, (d, z) 7→ dz, is their isomorphism.

Theorem 1. There is an injective homomorphism of algebraic groups

ι : Z →֒ G such that the mapping

ϕ : D × Z → G, (d, z) 7→ d·ι(z),

is an isomorphism of algebraic varieties (but, generally speaking, not a

homomorphism of algebraic groups).

Corollary. The underlying varieties of (in general, non-isomorphic)
algebraic groups D × Z and G are isomorphic.

Remark 1. The existence of ι in the proof of Theorem 1 is established
by an explicit construction.

Example ([15, Thm. 8, Proof]). Let G = GLn. Then D = SLn, Z =
{diag(t, . . . , t) | t ∈ k×}, and one can take

diag(t, . . . , t) 7→ diag(t, 1, . . . , 1)

as ι. In this example, G and D×Z are nonisomorphic algebraic groups.

Proof of Theorem 1. Let TD be a maximal torus of the group D, and
let TG be a maximal torus of the group G containing TD. The torus TD
is a direct factor of the torus TG: in the latter, there is a torus S such
that the map TD×S → TG, (t, s) 7→ ts, is an isomorphism of algebraic
groups (see [5, 8.5, Cor.]). We shall show that the mapping

ψ : D × S → G, (d, s) 7→ ds, (1)

is an isomorphism of algebraic varieties.
We have (see [5, Sect. 14.2, Prop. (1),(3)]):

(a) Z ⊆ TG, (b) DZ = G, (c) |D ∩ Z| <∞. (2)

Let g ∈ G. In view of (2)(b), there are d ∈ D, z ∈ Z such that
g = dz, and in view of (2)(a) and the definiton of S, there are t ∈ TD,
s ∈ S such that z = ts. We have dt ∈ D and ψ(dt, s) = dts = g.
Therefore, the morphism ψ is surjective.
Consider in G a pair of mutually opposite Borel subgroups contain-

ing TG. Their unipotent radicals U and U− lie in D. Let ND(TD)
and NG(TG) be the nornalizers of tori TD and TG in the groups D
and G respectively. Then ND(TD) ⊆ NG(TG) in view of (2)(b). The
homomorphism ND/TD → NG/TG induced by this embedding is an
isomorphism of groups (see [5, IV.13]), by which we identify them and
denote byW . For every σ ∈ W , fix a representative nσ ∈ ND(TD). The
group U∩nσU

−n−1
σ does not depend on the choice of this representative

because TD normalizes U−; we denote it by U ′

σ.
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It follows from the Bruhat decomposition that for each g ∈ G, there
are uniquely defined σ ∈ W , u ∈ U , u′ ∈ U ′

σ and tG ∈ TG such that
g = u′nσutG (see [9, 28.4, Thm.]). In view of the definition of S, there
are uniquely defined tD ∈ TD and s ∈ S such that tG = tDs, and since
u′, nσ, u, tD ∈ D, the condition g ∈ D is equivalent to the condition
s = e. It follows from this and the definition of the morphism ψ that
the latter is injective.
Thus, ψ is a bijective morphism. Therefore, to prove that it is an

isomorphism of algebraic varieties, it remains to prove its separability
(see [5, Sect. 18.2, Thm.]). We have Lie (G) = LieD+Lie (TG) (see [5,
Sect. 13.18, Thm.]) and Lie (TG) = Lie (TD) + Lie (S) (in view of the
definition of S). Therefore,

Lie (G) = Lie (D) + Lie (S). (3)

On the other hand, from (1) it is obvious that the restrictions of the
morphism ψ to the subgroups D × {e} and {e} × S in D × S, are
isomorphisms respectively with the subgroups D and S in G. Since
Lie (D×S) = Lie (D×{e})+Lie ({e}×S), from (3) it follows that the
differential of morphism ψ at the point (e, e) is surjective. Therefore
(see [5, Sect. 17.3, Thm.]), the morphism ψ is separable.
Since ψ is an isomorphism, from (1) it follows that dim(G) = dim(D)

+dim(S). On the other hand, from (2)(b),(c) it follows that dim(G) =
dim(D) + dim(Z). Therefore, Z and S are equidimensional and hence
isomorphic tori. Consequently, as ι one can take the composition of
any tori isomorphism Z → S with the identity embedding S →֒ G. �

3. Properties of factors. In contrast to the previous section, this one,
on the contrary, concerns the non-existence of some presentations the
underlying variety of an affine algebraic group as a product of algebraic
varieties.

Theorem 2. An algebraic variety on which there is a nonconstant

invertible regular function, cannot be a direct factor of the underlying

variety of a connected semisimple algebraic group.

Proof. If the statement of Theorem 2 were not true, then the existence
of the non-constant invertible regular function specified in it would
imply the existence of such a function on a connected semisimple al-
gebraic group. Dividing this function by its value at the unit element,
we would then get, according to [17, Thm. 3], a non-trivial character
of this group, which contradicts the absence of nontrivial characters of
connected semisimple groups. �
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Theorem 3. An algebraic curve cannot be a direct factor of the under-

lying variety of a connected semisimple algebraic group.

Proof. Suppose an algebraic curve X is a direct factor of the under-
lying variety of a connected semisimple algebraic group G. Then X
is irreducible, non-singular, affine, and there is a surjective morphism
π : G → X . Due to rationality of the underlying variety of G (see [4,
14.14]), the existence of π implies unirationality, and hence, by Luroth’s
theorem, rationality of X . Therefore, X is isomorphic to an open sub-
set U of A1. The case U = A1 is impossible due to Theorem 4. If
U 6= A1, then there is a non-constant invertible regular function on X ,
which is impossible in view of Theorem 2. �

Below, unless otherwise stated, we assume that k = C. By the
Lefschetz principle, Theorems 5, 10, 11, 12 proved below are valid for
any field k of characteristics zero. Topological terms refer to classical
topology, and homology and cohomology are singular.
Every complex reductive algebraic group G has a compact real form,

any two such forms are conjugate, and if G is one of them, then the
topological manifold G is homeomorphic to the product of G and a
Euclidean space; see [14, Chap. 5, §2, Thms. 2, 8, 9]. Therefore, G
and G have the same homology and cohomology. This is used below
without further explanation.

Theorem 4. If a d-dimensional algebraic variety X is a direct factor

of the underlying variety of a connected reductive algebraic group, then

Hd(X,Z) ≃ Z and Hi(X,Z) = 0 for i > d.

Proof. Suppose there is a connected reductive algebraic groupG and an
algebraic variety Y such that the underlying variety of G is isomorphic
to X × Y . Let n := dim(G); then dim(Y ) = n − d. The algebraic
varieties X and Y are irreducible non-singular and affine. Therefore
(see [12, Thm. 7.1]),

Hi(X,Z) = 0 for i > d, Hj(Y,Z) = 0 for j > n− d. (4)

By the universal coefficient theorem, for any algebraic variety V and
every i, we have

Hi(V,Q) ≃ Hi(V,Z)⊗Q, (5)

and by the Künneth formula,

Hn(G,Q) ≃ Hn(X × Y,Q) ≃
⊕

i+j=nHi(X,Q)⊗Hj(Y,Q). (6)

Therefore, from (4) it follows that

Hn(G,Q) ≃ Hd(X,Q)⊗Hn−d(Y,Q). (7)
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Consider a compact real form G of the group G. Since G is a closed
connected orientable n-dimensional topological manifold, Hn(G,Q) ≃
Q. Hence, Hn(G,Q) ≃ Q. From this and (24) it follows thatHd(X,Q) ≃
Q. In turn, in view of (5), the latter implies Hd(X,Z) ≃ Z, because
Hd(X,Z) is a finitely generated (see [6, Sect. 1.3]) torsion-free abelian
group (see [1, Thm. 1]). �

Corollary. A contractible algebraic variety (in particular, Ad) of posi-
tive dimension cannot be a direct factor of the underlying variety of a

connected reductive algebraic group.

Theorem 5. An algebraic surface cannot be a direct factor of the

underlying variety of a connected semisimple algebraic group.

Proof. Suppose there are a connected semisimple algebraic group G
and the algebraic varieties X and Y such that X is a surface, and
X × Y is isomorphic to the algebraic variety G. We keep the notation
of the proof of Theorem 4. Since G is semisimple, G is semisimple
too. Hence, H1(G,Q) = H2(G,Q) = 0 (see [13, §9, Thm. 4, Cor. 1]).
Insofar as the Q-vector spaces H i(G,Q) and Hi(G,Q) are dual to each
other, this gives

H1(G,Q) = H2(G,Q) = 0. (8)

Since G is connected, X and Y are connected too. Therefore,

H0(X,Q) = H0(Y,Q) = Q. (9)

From (6), (8), and (9) it follows that H2(X,Q) = 0. In view of (5),
this contradics Theorem 4, which completes the proof. �

4. Group properties determined by properties of underlying

variety. Theorem 1 naturally leads to the question of to what extent
the underlying variety of an algebraic group determines its group struc-
ture.
Explicitly or implicitly, this question has long been considered in the

literature.
For example, M. Lazar proved in [11] that if the underlying variety

of an algebraic group is isomorphic to an affine space, then this group
is unipotent (for a short proof, see Remark 2 below).
By Chevalley’s theorem, every connected algebraic group G con-

tains the largest connected affine normal subgroup Gaff , and the group
G/Gaff is an abelian variety. M. Rosenlicht in [17] considered G, which
he called toroidal, such that Gaff is a torus; this property is equiva-
lent to the absence connected one-dimensional unipotent subgroups.
Theorem 6 shows that it can be equivalently reformulated in terms of
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geometric properties of the underlying variety of G (the proof does not
use restrictions on the characteristic of k):

Theorem 6. The following properties of a connected algebraic group

G are equivalent:

(a) G is toroidal;

(b) G does not contain subvarieties isomorphic to A1.

Proof. Let π : G → G/Gaff be the natural epimorphism, and let X be
a subvariety of G isomorphic to A1. By shifting it by an appropriate
element of G, we can assume that e ∈ X . Since X is isomorphic to the
underlying variety of the group Ga, we can endow X with a structure
of an algebraic group isomorphic to Ga with the unit element e. Then
π|X : X → G/Gaff is a homomorphism of algebraic groups in view of
[17, Thm. 3]. Since X is an affine and G/Gaff is a complete algebraic
variety, this yields X ⊆ Gaff . Therefore, it comes down to proving
equivalence of the following properties:

(a′) Gaff is a torus;
(b′) Gaff does not contain subvarieties isomorphic to A1.

(a′)⇒ (b′): Let the subvariety X of the torus Gaff be isomorphic to
A1. The algebra of regular functions on Gaff is generated by invertible
functions. This means that this is also the case for the algebra of
regular functions on X . This contradicts the fact that there are no
non-constant invertible regular functions on A1.
(b′) ⇒ (a′): If (b′) holds, then Gaff is reductive, since the variety

Ru(Gaff) is isomorphic to Ad (see [7, p. 5-02, Cor.]), which for d > 0
contains affine lines. In addition, D(Gaff)={e}, because root subgroups
in a semisimple group are isomorphic to Ga. Hence, Gaff is a torus. �

Below, in Theorem 7, its Corollary, and Theorem 8 several group pro-
perties of connected affine algebraic groups are pointed out, which are
determined by the properties of underlying varieties. In the formula-
tions the following notation is used.
Let X be an irreducible algebraic variety. The multiplicative group

k[X ]× of invertible regular functions on X contains the subgroup of
nonzero constants k×, and k[X ]×/k× is a finitely generated free abelian
group (see [17, Thm. 1]). Let us denote

units(X) := rank(k[X ]×/k×).

According to [17, Thms. 2, 3], this invariant has the following proper-
ties:

(i) If X and Y are irreducible algebraic varieties, then

units(X × Y ) = units(X) + units(Y ). (10)
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(ii) If G is a connected algebraic group, then

units(G) = rank
(
Hom(G,Gm)

)
. (11)

In what follows, we use the following notation:

mh(X) := max{d ∈ Z>0 | Hd(G,Q) 6= 0}. (12)

If X is a non-singular affine algebraic variety, then, according to [12,
Thm. 7.1],

mh(X) 6 dim(X).

Theorem 7. If G is a connected affine algebraic group, then

dim(Ru(G)) = dim(G)−mh(G). (13)

Proof. Since the underlying variety of Ru(G) is isomorphic to an affine
space, the topological manifolds G and R := G/Ru(G) are homotopy
equivalent. Therefore, Hi(G,Q) ≃ Hi(R,Q) for every i and, therefore,

mh(G) = mh(R). (14)

Since R is reductive, it follows from (5) and Theorem 4 that

mh(R) = dim(R). (15)

In view of dim(R) = dim(G) − dim(Ru(G)), equalities (14) and (15)
imply (13). �

Corollary. The following properties of a connected affine algebraic

group G are equivalent:

(a) G is reductive;

(b) mh(G) = dim(G).

The previous corollary shows that the property of a connected affine
algebraic a group to be reductive is expressed in terms the geometric
property of its underlying variety. The following Theorem 8, generaliz-
ing M. Lazard’s theorem [11], shows that the same is true for the prop-
erty of a group to be solvable.

Theorem 8. The following properties of a connected affine algebraic

group S are equivalent:

(a) S is solvable;

(b) mh(S) = units(S);
(c) there are non-negative integers t and r such that the underlying

variety of S is isomorphic to At
∗
× Ar; wherein the equality t =

units(S) automatically holds.

The group S is unipotent (respectively, a torus) if and only if its un-

derlying variety is isomorphic to Ar (respectively, At
∗
).
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Proof. (a)⇔(b): Let G := S/Ru(S); it is a connected reductive algeb-
raic group. We shall use the same notation as in the proof of Theorem
1. Solvability of S is equivalent to the equality G = Z, whence, since
G and Z are connected, it follows that

S is solvable ⇐⇒ dim(G) = dim(Z). (16)

In view of 7, we have

dim(G) = mh(S). (17)

The elements of Hom(S,Gm) (respectively, Hom(G,Gm)) are trivial
on Ru(S) (respectively, D). From this and (2)(b) it follows that

Hom(S,Gm) ≃ Hom(G,Gm),

Hom(G,Gm) ≃ Hom(Z/(Z ∩D),Gm).
(18)

From (11), (18), and (2)(c) we get

units(S) = rank
(
Hom(Z/(Z ∩D),Gm)

)

= dim(Z/(Z ∩D)) = dim(Z).
(19)

Matching (16), (17), and (19) completes the proof of the equivalence
(a)⇔(b).
(a)⇒(c): This is proved in [7, p. 5-02, Cor.] for the filed k of

arbitrary characteristic.
(c)⇒(b): Let (c) be satisfied. From (10), (11) and the obvious equal-

ity units(Ar) = 0 it follows that

units(Ar × At
∗
) = t. (20)

On the other hand, since the topological manifold Ar is contractible,
and At

∗
is homotopy equivalent to the product of t circles, we have

Hj(A
t
∗
× Ar,Q) =

{
Q, if j = t,

0 if j > t;

from this and (12) we conclude that

mh(At
∗
× Ar) = t. (21)

Comparing (20) with (21) completes the proof of implication (c)⇒(b).
The group S is unipotent (respectively, is a torus), if and only if it

is solvable (i.e., according to (c), its underlying variety is isomorphic
to At

∗
× Ar) and, by Theorem 7, the equality mh(S) = 0 (respectively,

mh(S) = dim(S)) holds. The last statement of the theorem now follows
from (21). �
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Remark 2. The last statement of Theorem 8 is true for the field k
of any characteristic. For a torus, this follows from Corollary 1 of
Theorem 9. For unipotent groups, it is obtained by concatenating [7,
p. 5-02, Cor.] and [11]. Here is a short proof of M. Lazard’s theorem
[11], suitable for the field k of any characteristic.

Proof of M. Lazard’s theorem. Let the underlying variety of G be iso-
morphic to Ar. If G is not unipotent, then G contains a non-identity
semisimple element, and therefore, also a nonidentity torus (see [5,
Thms. 4.4(1), 11.10]). The action of this torus on G by left translations
has no fixed points. This contradicts the fact that every algebraic torus
action on Ar has a fixed point, see [2, Thm. 1]. �

5. Different group structures on the same variety. As is known,
there are infinitely many pairwise non-isomorphic unipotent groups of
a fixed sufficiently large dimension; their underlying varieties, however,
are all isomorphic (see Theorem 8). On the other hand, underlying
varieties of toroidal groups uniquely determine their group structure:

Theorem 9. Let G1 and G2 be algebraic groups, one of which is

toroidal. The following properties are equivalent:

(a) the underlying varieties of G1 and G2 are isomorphic;

(b) G1 are G2 isomorphic algebraic groups.

Proof. Let G1 be toroidal. Then, according to [17, Thm. 3], the com-
position of an isomorphism of the underlying variety of G2 to that of
G1 with a suitable left translation of G1 is an isomorphism of algebraic
groups, which proves (a)⇒(b). �

Corollary 1. Tori are isomorphic if and only if their underlying va-

rieties are isomorphic.

Corollary 2. Abelian varieties are isomorphic if and only if their

underlying varieties are isomorphic.

We now investigate the question of determinability of the group
structures by the properties of underlying varieties for reductive algeb-
raic groups.

Theorem 10. Let G1 and G2 be connected affine algebraic groups, and

let Ri be a maximal reductive algebraic subgroup of Gi, i = 1, 2. If the

underlying varieties of G1 and G2 are isomorphic, then R1 and R2 are

the connected algebraic groups with isomorphic Lie algebras.

Proof. From char(k) = 0 it follows that Gi is a semidirect product of
Ri and Ru(Gi) (see [5, 11.22]). Hence, Ri is connected (because Gi
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is connected), and the topological manifolds Gi and Ri are homotopy
equivalent (see the proof of Theorem 13).
Consider a compact form Ri of the reductive algebraic group Ri.

Topological manifolds Ri and Ri are homotopy equivalent.
Suppose that the underlying varieties of G1 and G2 are isomorphic,

and therefore they are homeomorphic as topological varieties. Then
the topological manifolds R1 and R2 are homotopy equivalent. In view
of [18, Satz], this implies that the real Lie algebras Lie (R1) and Lie (R2)
are isomorphic. Now the claim of the theorem follows from the fact that
the real Lie algebra Lie (Ri) is a real form of the complex Lie algebra
Lie (Ri). �

Theorem 11. Let R be a connected reductive algebraic group.

(i) If G is an algebraic group such that the underlying varieties of G
and R are isomorphic, then

(a) G is connected and reductive, and the Lie algebras Lie (R) and
Lie (G) are isomorphic;

(b) in the case of a semisimple simply connected group R the al-

gebraic groups R and G are isomorphic.

(ii) The number of all algebraic groups, considered up to isomor-

phism, whose underlying varieties are isomorphic to that of R, is finite.

Proof. (i)(a) It follows from connectedness of R and the condition on
G that G is connected. In view of Theorem 10 and reductivity of R,
the Lie algebra of a maximal reductive subgroup in G is isomorphic to
Lie (R). In particular, the dimension of this subgroup is dim(R). Since
dim(R) = dim(G), this subgroup coincides with G.
(i)(b) From the condition on G and simply connectedness of the

topological manifold R it follows that the topological manifoldG is sim-
ply connected. In view of (a), the Lie algebras Lie (R) and Lie (G) are
isomorphic. Consequently, the algebraic groups R and G are isomor-
phic (see [14, Chap. 1, §3, 3◦, Chap. 3, §3, 4◦]).
Statement (ii) follows from (i)(a) and finiteness of the numbers of all,

considered up to isomorphism, connected reductive algebraic groups of
a fixed dimension (this finiteness theorem, which I could not find in
the literature, is proved below in Appendix ; see Theorem 14). �

Remark 3. The proof of Theorem 14 yields an upper bound for the
number specified in statement (ii) of Theorem 11 (see also Remark 4).

Theorem 1 proves the existence non-isomorphic reductive non-semi-
simple algebraic groups, whose underlying varieties are isomorphic (in
accordance with statement (a) of Theorem 11, the Lie algebras of these
groups are isomorphic). There are also semisimple algebraic groups
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with similar properties. Below is given a general construction that
allows to construct them. It is applicable for the field k of any charac-
teristic.

6. Construction of non-isomorphic semisimple algebraic gro-

ups with isomorphic underlying varieties. Fix a positive integer
n and an abstract group H . Consider the group

G := H×n := H × · · · ×H (n factors).

We have C (G) = C (H)×n.
Let Fn bee a free group of rank n with a free system of generators

x1, . . . , xn. For any elements g = (h1, . . . , hn) ∈ G, where hj ∈ H , and
w ∈ Fn denote by w(g) the element of H , which is the image of element
w under the homomorphism Fn → H , mapping xj to hj for every j.
Any element σ ∈ End(Fn) determines the map

σG : G→ G, g 7→ (σ(x1)(g), . . . , σ(xn)(g)). (22)

It is not hard to see that

(σ ◦ τ)G = τG ◦ σG for any σ, τ ∈ End(Fn),

eG = id.
(23)

It follows from (22) and the definition of w(g) that

(i) σG(S
×n) ⊆ S×n for every subgroup S of H ;

(ii) σG(gz) = σG(g)σG(z) for all g ∈ G, z ∈ C (G).

In particular, the restriction of the map σG to the group C (G) is its
endomorphism.
From (23) it follows that if σ ∈ Aut(Fn), then σG is a bijection (but,

generally speaking, not an automorphism of the group G). Moreover,
if H is an algebraic group (respectively, a Lie group), then σG is an
automorphism of the algebraic variety (respectively, a diffeomorphism
of the differentiable manifold) G.
Consider now an element σ ∈ Aut(Fn) and a subgroup of C in C (G).

Then from (ii) it follows C-equivariance of the bijection σG : G→ G if
we assume that any element c ∈ C acts on the left copy of G as the
translation (multiplication) by c, and on the right one as the translation
by σG(c). The quotient for the first action is the group G/C, and
for the second is the group G/σG(C). Hence, σG induces a bijection
G/C → G/σG(C). Moreover, if H is an algebraic group (respectively, a
Lie group), then this bijection is an isomorphism of algebraic varieties
(respectively, a diffeomorphism of differentiable manifolds); see [5, 6.1].
Thus, G/C and G/σG(C) are isomorphic algebraic varieties (respec-
tively, diffeomorphic differentiable manifolds). But, generally speaking,
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G/C andG/σG(C) are not isomorphic as algebraic groups (respectively,
as Lie groups).
Indeed, take for H a simply connected semisimple algebraic group

(respectively, a compact Lie group). Then G is also a simply connected
algebraic group (respectively, a compact Lie group), so the group C (G)
is finite. Consider the natural epimomorphisms π : G → G/C and
πσ : G→ G/σG(C). Since the group C is finite, the differentials

deπ : Lie(G)→ Lie(G/C) and deπσ : Lie(G)→ Lie(G/σG(C))

are the Lie algebra isomorphisms. Suppose there is an isomorphism of
algebraic groups α : G/C → G/σG(C). Then

(deπσ)
−1 ◦ deα ◦ deπ : Lie(G)→ Lie(G)

is the Lie algebra automorphism. Since G is simply connected, it is
the differential of some automorphism α̃ ∈ Aut(G) (see [14, Thm. 6,
p. 30]). It follows from the construction that the diagram

G
α̃

//

π
��

G

πσ

��

G/C
α
// G/σG(C)

commutative, which, in turn, implies that α̃(C) = σG(C). Thus,
G/C and G/σG(C) are isomorphic as algebraic groups (respectively,
Lie groups) if and only if C and σG(C) lie in the same orbit of the
natural action of the group Aut(G) on the set of all subgroups of the
group C (G). This action is reduced to the action of the group Out(G)
(isomorphic to the group of automorphisms of the Dynkin diagram of
the group G; see [14, Chap. 4, §4, no. 1]), because Int(G) acts on C (G)
trivially. It is not difficult to find H , σ, and C such that the groups
C and σG(C) do not lie in the same Out(G)-orbit. Here is a concrete
example.

7. Example. Let H be a simply connected simple algebraic group
(respectively, a compact Lie group), whose center is non-trivial. Take
n = 2, so that

G = H ×H. (24)

Let σ is defined by the equalities

σ(x1) = x1, σ(x2) = x1x
−1
2 (25)

(clearly, x1, x1x
−1
2 is a free system of generators of the group F2, so

σ ∈ Aut(F2)). Let S be a non-trivial subgroup of C (H). Take

C := {(s, s) | s ∈ S}. (26)
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Then from (22), (25), (26) it follows that

σG(C) = {(s, e) | s ∈ S}. (27)

In view of simplicity of G, the group Out(G) contains a unique element
that does not preserve the factors on the right-hand side of the equality
(24),— it is the automorphism (h1, h2) 7→ (h2, h1). From this and from
(26), (27) it follows that C is not mapped to σG(C) by an automorphism
from Out(G). Therefore,

G/C = (H ×H)/C and G/σG(C) = (H/S)×H

are non-isomorphic algebraic groups (respectively, compact Lie groups),
which are isomorphic as algebraic varieties (respectively, diffeomorphic
as differentiable manifolds).
For example, let H = SLd, d > 2, and S = 〈z〉, where z =

diag(ε, . . . , ε)
∈ H , ε ∈ k is a primitive d-th root of 1. In this case, we obtain
non-isomorphic algebraic groups

G/C = (SLd × SLd)/〈(z, z)〉, G/σG(C) = PSLd × SLd,

whose underlying varieties are isomorphic. Note that if d = 2, then
G = Spin4, G/C = SO4.
For H = SUd and the same group S we obtain that

G/C = K1 := (SUd × SUd)/C, G/σG(C) = K2 := PUd × SUd

are diffeomorphic non-isomorphic compact Lie groups. For d = pr with
prime p this is proved in [3, p. 331], where non-isomorphness of the
groups K1 and K2 is deduced from non-isomorphness of their Pontrya-
gin rings H∗(K1,Z/pZ) and H∗(K2,Z/pZ) (discribing these rings is a
nontrivial problem). Note that if d = 2, then

K1 = SO4, K2 = SO3 × SU2. (28)

In [8, Chap. 3, §3.D], a diffemorphism of the underlying manifolds of
groups (28) is constructed using quaternions.

8. The case of simple algebraic groups. The following theorem
shows that the considered phenomenon is not possible for simple groups.

Theorem 12. Let G1 and G2 be algebraic groups, one of which is

connected and simple. The following properties are equivalent:

(a) the underlying varieties of G1 and G2 are isomorphic;

(b) G1 and G2 are isomorphic algebraic groups.

Proof. Let G1 be connected and simple.
Suppose (a) holds. Let G̃1 be a simply connected algebraic group

with the Lie algebra isomorphic to Lie (G1). Then G1 is isomorphic to
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G̃1/Z1 for some subgroup Z1 of C (G̃1). From Theorem 11 it follows that

the group G2 is isomorphic to G̃1/Z2 for some subgroup Z2 of C (G̃1).
As explained above, statement (b) is equivalent to the property that Z1

and Z2 lie in the same orbit of the natural action of the group Out(G̃1)
(isomorphic to the automorphism group of the Dynkin diagram of the

group G̃1) on the set of all subgroups of the group C (G̃1). We shall

show that Z1 and Z2 indeed lie in the same Out(G̃1)-orbit.
Since the fundamental groups of topological manifolds G1 and G2

are isomorphic to, respectively, Z1 and Z2, it follows from (a) that that
Z1 and Z2 are isomorphic groups. Let d be their order.

The structure of the group C (G̃1) is known (see [14, Table 3, pp.

297–298]). Namely, if the type of the simple group G̃1 is different from

Dℓ with even ℓ > 4, (29)

then C (G̃1) is a cyclic group. In the case of the group G̃1 of type (29),

the group C (G̃1) is isomorphic to the Klein four-group Z/2Z⊕ Z/2Z.
Since there is at most one subgroup of a given finite order in any cyclic

group, we get that if the type G̃1 is different from (29), then Z1 = Z2,
so in this case Z1 and Z2 lie in the same Out(G1)-orbit.

Now, let G̃1 be of type (29). This means that G̃1 = Spin4m for

some integer m > 2. Since |C (G̃1)| = 4, only the cases d = 1, 2, 4 are
possible. It is clear that Z1 = Z2 for d = 1 and 4, so in these cases, as
above, Z1 and Z2 lie in the same Out(G1)-orbit. Therefore, it remains
to consider only the case d = 2.

There are exactly three subgroups of order 2 in C (G̃1). The natural

action on C (G̃1) of the group Out(Spin4m) (isomorphic to the auto-

morphism group of the Dynkin diagram of the group G̃1) can be easily
described explicitly using the information specified in [14, Table 3, p.
297–298]1. This description shows that the number of Out(Spin4m)-
orbits on the set of these subgroups equals 1 for m = 2 and equals 2
for m > 2. Thus, for m = 2, the groups G1 and G2 are isomorphic and
it remains for us to consider the case m > 2.
The quotient group of the group Spin4m by a subgroup of order 2

in C (G̃1), which is not fixed (respectively, fixed) with respect to the
group Out(Spin4m), is the half-spin group SSpin4m (respectively, the

1In the notation of [14, Table 3, p. 297–298], for m = 2, each permutation of the
vectors h1, h3, h4 with fixed h2 is realized by some automorphism of the Dynkin
diagram (identified with the corresponding outer automorphism), and for m > 2,
the only nontrivial automorphism of the Dynkin diagram swaps h2m and h2m−1

and leaves the rest hi fixed.
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orthogonal group SO4m). Let SSpin4m and SO4m be the compact real
forms of the groups SSpin4m and SO4m, respectively. If the underlying
varieties of the groups SSpin4m and SO4m were isomorphic, then the
underlying manifolds of the groups SSpin4m and SO4m would be homo-
topy equivalent. But according to [3, Thm. 9.1], form > 2, they are not
homotopy equivalent, since H∗(SSpin4m,Z/2Z) and H∗(SO4m,Z/2Z)
for m > 2 are not isomorphic as algebras over the Steenrod algebra2.
Hence, the underlying varieties of the groups SSpin4m and SO4m for
m > 2 are not isomorphic. This completes the proof of implication
(a)⇒(b). The implication (b)⇒(a) is obvious. �

Considerations used in the proof of Theorem 12, yield a proof of the
following Theorem 13, which was published in [3] without proof.

Theorem 13 ([3, Thm. 9.3]). Two connected compact simple real

Lie groups are isomorphic if and only if their underlying manifolds are

homotopy equivalent.

Proof. It repeats the proof of Theorem 12 if in it assume that G1 and
G2 are connected simple compact real Lie groups, whose underlying
manifolds are homotopy equivalent, and replace Spin4m, SSpin4m, and
SO4m rspectively with Spin4m, SSpin4m, and SO4m. �

9. Questions.

1. Previous considerations naturally lead to the question of finding a
classification of pairs of non-isomorphic connected reductive algebraic
groups, whose underlying varieties are isomorphic. Is it possible to
obtain it?
2. The same for connected compact Lie groups, whose underlying

manifolds are homotopy equivalent.
3. It seems plausible that, using, in the spirit of [4], étale cohomology

in place of singular homology and cohomology, it is possible to prove
Theorem 5 and implication (c)⇒(a) of Theorem 8 in the case of positive
characteristic of the field k. Are Theorems 10, 11, 12 true for such k?

10. Appendix: finiteness theorems for connected reductive al-

gebraic groups and compact Lie groups. In this section, the
characteristic of k can be arbitrary.

Theorem 14. The number of all, considered up to isomorphism, con-

nected reductive algebraic groups of a fixed rank is finite.

2Note that H∗(SSpin
n
,Z/2Z) and H∗(SOn,Z/2Z) are isomorphic as algebras

over Z/2Z if (and only if) n is a power of 2, see [3, p. 330].
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Proof. For every connected reductive group G, there is a torus Z and a
simply connected semisimple algebraic group S such that G is obtained
by factorizing the group Z×S by a finite central subgroup. Indeed, let
S be the universal covering group of the connected semisimple group
D(G), let π : S → D(G) be the natural projection, and let Z = C (G)◦.
Then Z × S → G, (z, s) 7→ z ·π(s) is an epimorphism with a finite
kernel, i.e., a factorization with respect to a finite central subgroup.
Being simply connected, the group S is, up to isomorphism, uniquely

determined by the type of its root system. Insofar as the set of types
of root systems of any fixed rank is finite, tori of the same dimension
are isomorphic, and C (S) is a finite group, the problem comes down to
proving that, although for dim(Z) > 0 there are infinitely many finite
subgroups F in C (Z × S), the set of all, up to isomorphism, groups of
the form (Z × S)/F is finite. Note that for any σ ∈ Aut(Z × S), the
groups (Z × S)/F and (Z × S)/σ(F ) are isomorphic.
Proving this, we put

n := dim(Z) > 0,

and let ε1, . . . , εn be a basis of Hom(Z,Gm) ≃ Zn.
Let Dr×n be the set of all matrices (mij) ∈ Matr×n(Z) such that

(a) mij = 0 for i 6= j;
(b) mii divides mi+1,i+1;
(c) mii = m′

ii (see the notation in Section 1).

Consider a matrix M = (mij) ∈ Matr×n(Z). Then

ZM :=
⋂r

i=1
ker(εmi1

1 · · · εmin

n ) (30)

is an algebraic
(
n−rk(M)

)
-dimensional subgroup of Z. Every algebraic

subgroup of Z is obtained in this way. If M = (mij) has properties
(a) and (b), then ZM = ZM ′, where M ′ := (m′

ij), because ker(εdi ) =

ker(εd
′

i ). If r = n, and M is nondegenerate and has properties (a), (b),
(c), then ZM is a finite abelian group with invariant factors |m11|, . . .
. . . , |mnn|.
Elementary transformations of rows of the matrix M do not change

the group ZM . If τ1, . . . , τn is another basis of the group Hom(Z,Gm),
then τi = εci11 · · · ε

cin
n , where C = (cij) ∈ GLr(Z). The automorphism of

the group Hom(Z,Gm), for which εi 7→ τi, has the form σ∗

C , where σC
is an automorphism of the group Z. The mapping GLn(Z)→ Aut(Z),
C 7→ σC , is a group isomorphism and

ZMC = σC(ZM). (31)

Since elementary transformations of the columns of matrix M are car-
ried out by multiplying M on the right by the corresponding matrices
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from GLr(Z), and by means of elementary transformations of rows and
columns M can be transformed into its diagonal Smith normal form,
(31) implies the existence of an automorphism ν ∈ Aut(Z) and a ma-
trix D ∈ Dr×n such that ν(ZM ) = ZD.
Consider now a finite subgroup F in C (Z × S) = Z ×C (S) and the

canonical projections

Z
πZ←− F

πS−→ C (S).

The groups (Z × S)/F and
(
(Z × S)/(F ∩ Z)

)
/
(
F/(F ∩ Z)

)
are iso-

morphic. Being an n-dimensional torus, the group Z/(F ∩ Z) is iso-
morphic to the torus Z. Therefore, the groups (Z × S)/(F ∩ Z) and
Z × S are isomorphic. Hence, without changing, up to isomorphism,
the group (Z×S)/F , we can (and will) assume that F ∩Z = {e}. Then
ker(πS) = {e}, and therefore, πS is an isomorphism between F and the
subgroup πS(F ) in C (S). Let α : πS(F ) → πZ(F ) be an epimorphism
that is the composition of the inverse isomorphism with πZ . Then

F = {α(g) · g | g ∈ πS(F )}.

The subgroup πZ(F ) = α(πS(F )) in Z is finite and therefore has the
form ZM for some nondegenerate matrix M ∈ Matn×n(Z). According
to the above, there is an element ν ∈ Aut(Z) such that ν(πZ(F )) = ZD,
where D is a nondegenerate matrix from Dn×n; we denote by the same
letter the extension of ν to an element of Aut(Z × S), which is the
identity on S. Replacing F by ν(F ) shows that, without changing, up
to isomorphism, the group (Z×S)/F , we can assume that πZ(F ) = ZD.
Thus, if F is the set all subgroups in Z × C (S) of the form

{γ(h) · h | h ∈ H},

where H runs through all subgroups of C(S), and γ through all epimor-
phisms H → ZD with a nondegenerate matrix D ∈ Dn×n, then F ∈
F . Since the group C (S) is finite, and the order of the group ZD is
| det(D)|, the set F is finite. This completes the proof. �

Corollary 1. The number of all, considered up to isomorphism, root

data of a fixed rank is finite.

Proof. This follows from Theorem 14, since connected reductive groups
are classified by their root data, see [19, Thms. 9.6.2, 10.1.1]. �

Corollary 2. The number of all, considered up to isomorphism, con-

nected compact Lie groups of a fixed rank is finite.

Proof. This follows from Theorem 14 in view of the correspondence
between connected reductive algebraic groups and connected compact
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Lie groups, given by passing to a compact real form, see [14, Thm.
5.2.12]. �

Remark 4. The proof of the Theorem 14 yields an upper bound for
the numbers specified in it and its Corollaries 1 and 2.
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