### Working paper

## Supersymmetry and Hodge theory on Sasakian and Vaisman manifolds

https://arxiv.org/abs/1803.11549

I describe a combinatorial construction of the cohomology classes in compactified moduli spaces of curves ZˆI∈H∗(barM_g,n) starting from the following data: an odd derivation I, whose square is non-zero in general, I2≠0, acting on a ℤ/2ℤ-graded associative algebra with odd scalar product. The constructed cocycles were first described in the theorem 2 in the author's paper "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals". Comptes Rendus Mathematique, 348, pp. 359-362, arXiv:0912.5484 , preprint HAL-00102085 (09/2006). By the theorem 3 from loc.cit. the family of the cohomology classes obtained in the case of the algebra Q(N) and the derivation I=[Λ,⋅] coincided with the generating function of products of ψ−classes. This was the first nontrivial computation of categorical Gromov-Witten invariants of higher genus. The result matched with the mirror symmetry prediction, i.e. with the classical (non-categorical) Gromov-Witten descendent invariants of a point for all genus. As a byproduct of that computation a new combinatorial formula for products of ψ-classes ψi=c1(T∗pi) in the cohomology H∗(barM_g,n) is written out.

We prove that the embedding of the derived category of 1-motives up to isogeny into the triangulated category of effective Voevodsky motives, as well as its left adjoint functor *LAlb* ℚ, commute with the Hodge realization. This result yields a new proof of the rational form of Deligne's conjecture on 1-motives.

We prove a formula expressing the motivic integral (Loeser and Sebag, 2003) [34] of a K3 surface over C((t))C((t)) with semi-stable reduction in terms of the associated limit mixed Hodge structure. Secondly, for every smooth variety over a complete discrete valuation field we define an analogue of the monodromy pairing, constructed by Grothendieck in the case of abelian varieties, and prove that our monodromy pairing is a birational invariant of the variety. Finally, we propose a conjectural formula for the motivic integral of maximally degenerate K3 surfaces over an arbitrary complete discrete valuation field and prove this conjecture for Kummer K3 surfaces.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.