### Working paper

## Speed of convergence of Chernoff approximations to solutions of evolution equations

We present a general method of solving the Cauchy problem for a linear parabolic partial differential equation of evolution type with variable coefficients and demonstrate it on the equation with derivatives of orders two, one and zero. The method is based on the Chernoff approximation procedure applied to a specially constructed shift operator. It is proven that approximations converge uniformly to the exact solution.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

We study the Cauchy problem for Fokker–Planck–Kolmogorov equations for finite measures with unbounded and degenerate coefficients. Sufficient conditions for the existence and uniqueness of solutions are given.

This volume collects some contributed papers by the participants to the workshop "Singularities in nonlinear evolution phenomena and applications", which was held at the Centro di Ricerca Matematica E. De Giorgi, from May 26th to May 30th, 2008.

The topic of the workshop was the formation and the evolution of singular structures, like systems of points, curves and surfaces.

This is an advanced text on ordinary differential equations (ODES) in Banach and more general locally convex spaces, most notably the ODEs on measures and various function spaces. It yields the concise exposition of the fundamentals with the fast, but rigorous and systematic transition to the up-fronts of modern research in linear and nonlinear partial and pseudo-differential equations, general kinetic equations and fractional evolutions. The level of generality is chosen to be suitable for the study of the most important nonlinear equations of mathematical physics, such as Boltzmann, Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard, Hamilton-Jacobi-Bellman, nonlinear Schroedinger, McKean-Vlasov diffusions and their nonlocal extensions, mass-action-law kinetics from chemistry. It also covers nonlinear evolutions arising in evolutionary biology and mean-field games, optimization theory, epidemics and system biology, in general models of interacting particles or agents describing splitting and merging, collisions and breakage, mutations and the preferential-attachment growth on networks. The book is meant for final year undergraduate and postgraduate students and researchers in differential equations and their applications. A significant amount of attention is paid to the interconnections between various topics revealing where and how a particular result is used in other chapters or may be used in other contexts, as well as to the clarification of the links between the languages of pseudo-differential operators, generalized functions, operator theory, abstract linear spaces, fractional calculus and path integrals.

For a densely defined self-adjoint operator $\mathcal{H}$ in Hilbert space $\mathcal{F}$ the operator $\exp(-it\mathcal{H})$ is the evolution operator for the Schr\"odinger equation $i\psi'_t=\mathcal{H}\psi$, i.e. if $\psi(0,x)=\psi_0(x)$ then $\psi(t,x)=(\exp(-it\mathcal{H})\psi_0)(x)$ for $x\in Q.$ The space $\mathcal{F}$ here is the space of wave functions $\psi$ defined on an abstract space $Q$, the configuration space of a quantum system, and $\mathcal{H}$ is the Hamiltonian of the system. In this paper the operator $\exp(-it\mathcal{H})$ for all real values of $t$ is expressed in terms of the family of self-adjoint bounded operators $S(t), t\geq 0$, which is Chernoff-tangent to the operator $-\mathcal{H}$. One can take $S(t)=\exp(-t\mathcal{H})$, or use other, simple families $S$ that are listed in the paper. The main theorem is proven on the level of semigroups of bounded operators in $\mathcal{F}$ so it can be used in a wider context due to its generality. Two examples of application are provided.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.