• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Working paper

Homological mirror symmetry for higher dimensional pairs of pants

Polishchuk A., Lekili Y.
Using Auroux's description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of k+1 generic hyperplanes in ℂℙ^n, for k≥n, with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of (n+2)-generic hyperplanes in ℂP^n (n-dimensional pair-of-pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety x_1x_2..x_{n+1}=0. By localizing, we deduce that the (fully) wrapped Fukaya category of n-dimensional pants is equivalent to the derived category of x_1x_2...x_{n+1}=0.