### Working paper

## Derived categories of singular surfaces

Building upon ideas of Eisenbud, Buchweitz, Positselski, and others, we introduce the notion of a factorization category. We then develop some essential tools for working with factorization categories, including constructions of resolutions of factorizations from resolutions of their components and derived functors. Using these resolutions, we lift fully-faithfulness and equivalence statements from derived categories of Abelian categories to derived categories of factorizations. Some immediate geometric consequences include a realization of the derived category of a projective hypersurface as matrix factorizations over a noncommutative algebra and recover of a theorem of Baranovsky and Pecharich.

We provide descriptions of the derived categories of degree d hypersurface fibrations which generalize a result of Kuznetsov for quadric fibrations and give a relative version of a well-known theorem of Orlov. Using a local generator and Morita theory, we re-interpret the resulting matrix factorization category as a derivedequivalent sheaf of dg-algebras on the base. Then, applying homological perturbation methods, we obtain a sheaf of A∞-algebras which gives a new description of homo-logical projective duals for (relative) d-Veronese embeddings, recovering the sheaf of Clifford algebras obtained by Kuznetsov in the case when d = 2.

In this paper, we construct infinitely many examples of toric Fano varieties with Picard number three, which do not admit full exceptional collections of line bundles. In particular, this disproves King's conjecture for toric Fano varieties. More generally, we prove that for any constant $c>\frac 34$ there exist infinitely many toric Fano varieties $Y$ with Picard number three, such that the maximal length of exceptional collection of line bundles on $Y$ is strictly less than $c\operatorname {rk} K_0(Y).$ To obtain varieties without full exceptional collections of line bundles, it suffices to put $c=1.$ On the other hand, we prove that for any toric nef-Fano DM stack $Y$ with Picard number three, there exists a strong exceptional collection of line bundles on $Y$ of length at least $\frac 34 \operatorname {rk} K_0(Y).$ The constant $\frac 34$ is thus maximal with this property.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.