### Working paper

## EA-Matrix integrals of associative algebras and equivariant localization.

We discuss applications of generating functions for colored graphs to asymptotic expansions of matrix integrals. The described technique provides an asymptotic expansion of the Kontsevich integral. We prove that this expansion is a refinement of the Kontsevich expansion, which is the sum over the set of classes of isomorphic ribbon graphs. This yields a proof of Kontsevich’s results that is independent of the Feynman graph technique.

https://arxiv.org/abs/1803.11549

I describe a combinatorial construction of the cohomology classes in compactified moduli spaces of curves ZˆI∈H∗(barM_g,n) starting from the following data: an odd derivation I, whose square is non-zero in general, I2≠0, acting on a ℤ/2ℤ-graded associative algebra with odd scalar product. The constructed cocycles were first described in the theorem 2 in the author's paper "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals". Comptes Rendus Mathematique, 348, pp. 359-362, arXiv:0912.5484 , preprint HAL-00102085 (09/2006). By the theorem 3 from loc.cit. the family of the cohomology classes obtained in the case of the algebra Q(N) and the derivation I=[Λ,⋅] coincided with the generating function of products of ψ−classes. This was the first nontrivial computation of categorical Gromov-Witten invariants of higher genus. The result matched with the mirror symmetry prediction, i.e. with the classical (non-categorical) Gromov-Witten descendent invariants of a point for all genus. As a byproduct of that computation a new combinatorial formula for products of ψ-classes ψi=c1(T∗pi) in the cohomology H∗(barM_g,n) is written out.

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the Gamma class Γ_F. When the quantum cohomology of F is semisimple, we say that F satisfies Gamma Conjecture II if the columns of the central connection matrix of the quantum cohomology are formed by Γ_F Ch(E_i) for an exceptional collection {E_i} in the derived category of coherent sheaves D^b_{coh}(F). Gamma Conjecture II refines part (3) of Dubrovin's conjecture. We prove Gamma Conjectures for projective spaces, toric manifolds, certain toric complete intersections and Grassmannians.

Given a singular variety I discuss the relations between quantum cohomology of its resolution and smoothing. In particular, I explain how toric degenerations help with computing Gromov–Witten invariants, and the role of this story in “Fanosearch” programme. The challenge is to formulate enumerative symplectic geometry of complex 3-folds in a way suitable for extracting invariants under blowups, contractions, and transitions.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.