### ?

## Newton-Okounkov polytopes of Bott-Samelson varieties as Minkowski sums

Cornell University
,
2018.

We compute the Newton--Okounkov bodies of line bundles on a Bott--Samelson resolution of the complete flag variety of $GL_n$ for a geometric valuation coming from a flag of translated Schubert subvarieties. The Bott--Samelson resolution corresponds to the decomposition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}\ldots s_1) of the longest element in the Weyl group, and the Schubert subvarieties correspond to the terminal subwords in this decomposition. We prove that the resulting Newton--Okounkov polytopes for semiample line bundles satisfy the additivity property with respect to the Minkowski sum. In particular, they are Minkowski sums of Newton--Okounkov
polytopes of line bundles on the complete flag varieties for GL_2,... , GL_{n}.

Valentina Kiritchenko, Transformation Groups 2017 Vol. 22 No. 2 P. 387-402

We compute the Newton-Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decomposition (s_1)(s_2s_1)(s_3s_2s_1)(...)(s_{n-1}...s_1) of the longest element in the Weyl group. The resulting Newton-Okounkov bodies coincide with the Feigin-Fourier-Littelmann-Vinberg ...

Added: February 25, 2016

Kiritchenko V., Arnold Mathematical Journal 2019 Vol. 5 No. 2-3 P. 355-371

For classical groups SL(n), SO(n) and Sp(2n), we define uniformly geometric valuations on the corresponding complete flag varieties. The valuation in every type comes from a natural coordinate system on the open Schubert cell and is combinatorially related to the Gelfand-Zetlin pattern in the same type. In types A and C, we identify the corresponding ...

Added: October 15, 2019

Cerulli Irelli G., Fang X., Feigin E. et al., / Cornell University. Series math "arxiv.org". 2019. No. 1901.11020.

We continue, generalize and expand our study of linear degenerations of flag varieties from [G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier, M. Reineke, Math. Z. 287 (2017), no. 1-2, 615-654]. We realize partial flag varieties as quiver Grassmannians for equi-oriented type A quivers and construct linear degenerations by varying the corresponding quiver representation. ...

Added: February 5, 2019

Feigin E., Fourier G., Littelmann P., Transformation Groups 2017 Vol. 22 No. 2 P. 321-352

We introduce the notion of a favourable module for a complex unipotent algebraic group, whose properties are governed by the combinatorics of an associated polytope. We describe two filtrations of the module, one given by the total degree on the PBW basis of the corresponding Lie algebra, the other by fixing a homogeneous monomial order ...

Added: August 4, 2017

Kiritchenko V., / Cornell University. Series math "arxiv.org". 2014.

We describe an elementary convex geometric algorithm for realizing Schubert cycles in complete flag varieties by unions of faces of polytopes. For GL_n and Gelfand--Zetlin polytopes, combinatorics of this algorithm coincides with that of the mitosis on pipe dreams introduced by Knutson and Miller. For Sp_4 and a Newton--Okounkov polytope of the symplectic flag variety, ...

Added: September 17, 2014

Kiritchenko V., Padalko M., / Cornell University. Series arXiv "math". 2018.

A Newton-Okounkov polytope of a complete flag variety can be turned into a convex geometric model for Schubert calculus. Namely, we can represent Schubert cycles by linear combinations of faces of the polytope so that the intersection product of cycles corresponds to the set-theoretic intersection of faces (whenever the latter are transverse). We explain the ...

Added: October 15, 2019

Bigeni A., Feigin E., Journal of Integer Sequences 2020 Vol. 23 No. 20.4.6 P. 1-32

We define symmetric Dellac configurations as the Dellac configurations that are symmetrical with respect to their centers. The even-length symmetric Dellac configurations coincide with the Fang-Fourier symplectic Dellac configurations. Symmetric Dellac configurations generate the Poincaré polynomials of (odd or even) symplectic or orthogonal versions of degenerate flag varieties. We give several combinatorial interpretations of the ...

Added: April 16, 2020

Valentina Kiritchenko, Mathematical Research Letters 2016 Vol. 23 No. 4 P. 1069-1096

We describe an elementary convex geometric algorithm for realizing Schubert cycles in complete flag varieties by unions of faces of polytopes. For GL_n and Gelfand{Zetlin polytopes, combinatorics of this algorithm coincides with that of the mitosis on pipe dreams introduced by Knutson and Miller. For Sp_4 and a Newton{Okounkov polytope of the symplectic flag variety, ...

Added: February 25, 2016

Rostislav Devyatov, International Mathematics Research Notices 2014 Vol. 2014 No. 11 P. 2972-2989

Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain simple groups of type A, and P⊆G be a parabolic subgroup. Extending the results of Popov, we enumerate all triples (G,P,n) such that (a) there exists an open G-orbit on the multiple flag variety G/P×G/P×⋯×G/P (n factors) ...

Added: October 9, 2013

Kiritchenko V., / Cornell University. Series arXiv "math". 2020.

A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push-pull) operators in Chow rings. We define convex geometric analogs of push-pull operators and describe their applications to the theory of Newton-Okounkov convex bodies. Convex geometric push-pull operators yield an inductive construction of Newton-Okounkov polytopes of Bott-Samelson varieties. ...

Added: October 13, 2021

Bigeni A., Feigin E., Linear Algebra and its Applications 2019 Vol. 573 P. 54-79

The goal of this paper is to study the link between the topology of the degenerate flag varieties and combinatorics of the Dellac configurations. We define three new classes of algebraic varieties closely related to the degenerate flag varieties of types A and C. The definitions are given in terms of linear algebra: they are ...

Added: October 8, 2019

Feigin E., Makedonskyi I., International Mathematics Research Notices 2020 No. 14 P. 4357-4394

The goal of this paper is two-fold. First, we write down the semi-infinite Plücker relations, describing the Drinfeld–Plücker embedding of the (formal version of) semi-infinite flag varieties in type A. Second, we study the homogeneous coordinate ring, that is, the quotient by the ideal generated by the semi-infinite Plücker relations. We establish the isomorphism with ...

Added: September 1, 2020

Smirnov E., Journal of Mathematical Sciences 2020 Vol. 248 No. 3 P. 338-373

This paper is a review of results on multiple flag varieties, i.e., varieties of the form G/P1×· · ·×G/Pr. We provide a classification of multiple flag varieties of complexity 0 and 1 and results on the combinatorics and geometry of B-orbits and their closures in double cominuscule flag varieties. We also discuss questions of finiteness for the ...

Added: July 6, 2020

Cerulli Irelli G., Fang X., Feigin E. et al., Mathematische Zeitschrift 2020 Vol. 296 No. 1 P. 453-477

We continue, generalize and expand our study of linear degenerations of flag varieties from Cerulli Irelli et al. (Math Z 287(1–2):615–654, 2017). We realize partial flag varieties as quiver Grassmannians for equi-oriented type A quivers and construct linear degenerations by varying the corresponding quiver representation. We prove that there exists the deepest flat degeneration and the ...

Added: September 1, 2020

Zhgoon V., Knop F., Doklady Mathematics 2019 Vol. 99 No. 2 P. 132-136

We prove new results that generalize Vinberg’s complexity theorem for the action of reductive group on an algebraic variety over an algebraically nonclosed field. We provide new results on strong k-stability for actions on flag varieties are given. ...

Added: October 8, 2019

Arzhantsev I., Proceedings of the American Mathematical Society 2011 Vol. 139 No. 3 P. 783-786

Added: July 10, 2014

Feigin E., Selecta Mathematica, New Series 2012 Vol. 18 No. 3 P. 513-537

Let Fλ be a generalized flag variety of a simple Lie group G embedded into the projectivization of an irreducible G-module Vλ. We define a flat degeneration Fλa, which is a GaM variety. Moreover, there exists a larger group Ga acting on Fλa, which is a degeneration of the group G. The group Ga contains ...

Added: August 31, 2012

Feigin E., Cerulli Irelli G., Reineke M., Algebra & Number Theory 2012 Vol. 6 No. 1 P. 165-194

Quiver Grassmannians are varieties parametrizing subrepresentations of a quiver representation. It is observed that certain quiver Grassmannians for type A quivers are isomorphic to the degenerate flag varieties investigated earlier by the second named author. This leads to the consideration of a class of Grassmannians of subrepresentations of the direct sum of a projective and ...

Added: June 29, 2012

Kotelnikova M. V., Aistov A., Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: Социальные науки 2019 Т. 55 № 3 С. 183-189

The article describes a method that allows to improve the content of disciplines of the mathematical cycle by dividing them into invariant (general) and variable parts. The invariants were identified for such disciplines as «Linear algebra», «Mathematical analysis», «Probability theory and mathematical statistics» delivered to Bachelors program students of economics at several universities. Based on ...

Added: January 28, 2020

Borzykh D., ЛЕНАНД, 2021

Книга представляет собой экспресс-курс по теории вероятностей в контексте начального курса эконометрики. В курсе в максимально доступной форме изложен тот минимум, который необходим для осознанного изучения начального курса эконометрики. Данная книга может не только помочь ликвидировать пробелы в знаниях по теории вероятностей, но и позволить в первом приближении выучить предмет «с нуля». При этом, благодаря доступности изложения и небольшому объему книги, ...

Added: February 20, 2021

В. Л. Попов, Математические заметки 2017 Т. 102 № 1 С. 72-80

Мы доказываем, что аффинно-треугольные подгруппы являются борелевскими подгруппами групп Кремоны. ...

Added: May 3, 2017

Красноярск : ИВМ СО РАН, 2013

Труды Пятой Международной конференции «Системный анализ и информационные технологии» САИТ-2013 (19–25 сентября 2013 г., г.Красноярск, Россия): ...

Added: November 18, 2013

Min Namkung, Younghun K., Scientific Reports 2018 Vol. 8 No. 1 P. 16915-1-16915-18

Sequential state discrimination is a strategy for quantum state discrimination of a sender’s quantum
states when N receivers are separately located. In this report, we propose optical designs that can
perform sequential state discrimination of two coherent states. For this purpose, we consider not
only binary phase-shifting-key (BPSK) signals but also general coherent states, with arbitrary prior
probabilities. Since ...

Added: November 16, 2020

Grines V., Gurevich E., Pochinka O., Russian Mathematical Surveys 2017 Vol. 71 No. 6 P. 1146-1148

In the paper a Palis problem on finding sufficient conditions on embedding of Morse-Smale diffeomorphisms in topological flow is discussed. ...

Added: May 17, 2017