### Working paper

## Interpolation Macdonald polynomials and Cauchy-type identities

The naturally topologized order complex of proper algebraic subsets in RP^2, defined by systems of quadratic forms, has rational homology of S^13.

Planning electric-rolling-stock (ERS) maintenance in conditions of limited resources can be carried out based on the following criteria of efficiency of construction of the cycle diagram of the electric rolling stock: meeting the requirements of the railway-traffic safety provided by adjusting the planned movement time of the electric rolling stock for the purpose of not allowing an excessive lapse of time between the maintenance over that permissible and uniformity of maintenance. The solution of the set problem using the graph theory allows obtaining the whole set of the permissible values of maintenance and selecting a value that, on the one hand, corresponds to the planned train time schedule (PTTS) and, on the other hand, differs minimally from the optimal with respect to the selected criterion. This takes a significant amount of time. The problem can be quickly solved using a genetic algorithm. The introduction of a new criterion—total excess time lapse between maintenance works over the permissible interval—allows obtaining the solution with any initial data, which is not always achievable when using the uniform-maintenance criterion. The crossover and permutation algorithm implemented within the genetic algorithm is adapted taking into account considering the peculiarities of the agents engaged in solving the problem that has been set out. We have studied the possibility of using various types of crossover and permutation to construct the cycle diagrams and influence of the parameters of the genetic algorithm on the results. The obtained analytical results are tested for the conditions of the Moscow subway.

The collection represents proceedings of the XVIII international conference “Problems of Theoretical Cybernetics” (Penza, 19–23 June, 2017), that is sponsored by Russian Foundation for Basic Research (project N 17-01-20217-г). The conference subject area includes: control systems synthesis, complexity, reliability, and diagnostics; automata; computer languages and programming; graph theory; combinatorics; coding theory; theory of pattern recognition; mathematical programming and operations research, mathematical theory of intelligence systems; applied mathematical logic; functional systems theory; optimal control theory; applications of cybernetics in natural science and technology.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

This volume contains a selection of contributions from the "First International Conference in Network Analysis," held at the University of Florida, Gainesville, on December 14-16, 2011. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of this volume is to overcome this difficulty by collecting the major results found by the participants and combining them in one easily accessible compilation.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.