### Working paper

## The unreasonable power of the lifting property in elementary mathematics

A new type of massless Dirac fermions in *crystalline *three_dimensional topological insulators (three_dimen_sional two_dimensional situation) has been predicted. The spectrum has fourfold degeneracy at the top of the two_dimensional Brillouin zone (M point) and twofold degeneracy near the M point. Crystal symmetry along with the time reversal invariance in three_dimensional topological insulators allows fourfold degenerate Dirac cones, which are absent in the classification of topological features in R._J. Slager et al., Nat. Phys. **9**, 98 (2013). The Hamiltonian in the cited work does not contain Dirac singularities with more than twofold degeneracy. For this reason, the corresponding topological classification is incomplete. The longitudinal magnetic field in the spinless case holds the massless dispersion law of fermions and does not lift fourfold degeneracy. In the spinor case, the magnetic field lifts fourfold degeneracy, holding only twofold degeneracy, and results in the appearance of a band gap in the spectrum of fermions.

We develop the basic constructions of homological algebra in the (appropriately defined) unbounded derived categories of modules over algebras over coalgebras over noncommutative rings (which we call semialgebras over corings). We define double-sided derived functors SemiTor and SemiExt of the functors of semitensor product and semihomomorphisms, and construct an equivalence between the exotic derived categories of semimodules and semicontramodules. Certain (co)flatness and/or (co)projectivity conditions have to be imposed on the coring and semialgebra to make the module categories abelian (and the cotensor product associative). Besides, for a number of technical reasons we mostly have to assume that the basic ring has a finite homological dimension (no such assumptions about the coring and semialgebra are made). In the final chapters we construct model category structures on the categories of complexes of semi(contra)modules, and develop relative nonhomogeneous Koszul duality theory for filtered semialgebras and quasi-differential corings. Our motivating examples come from the semi-infinite cohomology theory. Comparison with the semi-infinite (co)homology of Tate Lie algebras and graded associative algebras is established in appendices; an application to the correspondence between Tate Harish-Chandra modules with complementary central charges is worked out; and the semi-infinite homology of a locally compact topological group relative to an open profinite subgroup is defined.

The description of algebraic structure of n-fold loop spaces can be done either using the formalism of topological operads, or using variations of Segal’s Γ-spaces. The formalism of topological operads generalises well to different categories yielding such notions as (Formula presented.)-algebras in chain complexes, while the Γ-space approach faces difficulties. In this paper we discuss how, by attempting to extend the Segal approach to arbitrary categoires, one arrives to the problem of understanding “weak” sections of a homotopical Grothendieck fibration. We propose a model for such sections, called derived sections, and study the behaviour of homotopical categories of derived sections under the base change functors. The technology developed for the base-change situation is then applied to a specific class of “resolution” base functors, which are inspired by cellular decompositions of classifying spaces. For resolutions, we prove that the inverse image functor on derived sections is homotopically full and faithful.

The book contains the reports of the member of the congress from the different countres. They consider the idea of the symmety in the science and in the art.

The paper examines the significance of Platonic Solids in different parts of modern science.