### Working paper

## Semiparametric estimation in the normal variance-mean mixture model

Given a Lévy process (Lt)t≥0 and an independent nondecreasing process (time change) (T(t))t≥0, we consider the problem of statistical inference on T based on low-frequency observations of the time-changed Lévy process LT(t). Our approach is based on the genuine use of Mellin and Laplace transforms. We propose a consistent estimator for the density of the increments of T in a stationary regime, derive its convergence rates and prove the optimality of the rates. It turns out that the convergence rates heavily depend on the decay of the Mellin transform of T. Finally, the performance of the estimator is analysed via a Monte Carlo simulation study.

Given a Brownian motion B, we consider the so-called statistical Skorohod embedding problem of recovering the distribution of an independent random time T based on i.i.d. sample from BT. We propose a consistent estimator for the density of T, derive its convergence rates and prove their optimality.

In this paper, we consider the problem of statistical inference for generalized Ornstein-Uhlenbeck processes of the type

\[

X_{t} = e^{-\xi_{t}} \left( X_{0} + \int_{0}^{t} e^{\xi_{u-}} d u \right),

\]

where \(\xi_s\) is a L{\'e}vy process. Our primal goal is to estimate the characteristics of the L\'evy process \(\xi\) from the low-frequency observations of the process \(X\). We present a novel approach towards estimating the L{\'e}vy triplet of \(\xi,\) which is based on the Mellin transform technique. It is shown that the resulting estimates attain optimal minimax convergence rates. The suggested algorithms are illustrated by numerical simulations.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.