Working paper
Primitive forms for Gepner singularities
We prove an asymptotic formula for the twisted first moment of central $L$-values in weight aspect on average. Our estimate of the error term allows extending the logarithmic length of mollifier $\Delta$ up to $2$. The best previously known result, due to Iwaniec and Sarnak, was $\Delta<1$. The proof is based on a representation formula for the error in terms of Legendre polynomials.
The local multiplicities of the caustics, the Maxwell sets, and the complex Stokes' sets in the spaces of versal deformations of Pham singularities (that is, of germs of holomorphic functions C^n --> C^1 which are expressed by the sums of degrees of the coordinate functions) are calculated
This volume contains the proceedings of the conference "Primitive Forms and Related Subjects" held at Kavli IPMU, the University of Tokyo, in February 10-14, 2014. The principal aim of the conference was to discuss the current status of rapidly developing subjects related to primitive forms. In particular, Fukaya category, Gromov-Witten and FJRW invariants, mathematical formulation of Landau-Ginzburg models, and mirror symmetry were discussed. The conference had three introductory courses by experts, and 12 lectures on more advanced topics. The present volume contains two survey articles and 11 research articles based on the conference presentations. This volume is therefore recommended both to researchers who are already experts in the subjects, and also to graduate students who are interested in and want to begin study of these subjects.
We study the relation between topological string theory and singularity theory using the partition function of A_N-1 topological string defined by matrix integral of Kontsevich type. Genus expansion of the free energy is considered, and the genus g=0 contribution is shown to be described by a special solution of N-reduced dispersionless KP system. We show a universal correspondences between the time variables of dispersionless KP hierarchy and the flat coordinates associated with versal deformations of simple singularities of type A. We also study the behavior of topological matter theory on the sphere in a topological gravity background, to clarify the role of the topological string in the singularity theory. Finally we make some comment on gravitational phase transition.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.