### Working paper

## Two-Station Single-Track Railway Scheduling Problem With Trains of Equal Speed

The notion of a boundary graph property was recently introduced as a relaxation of that of a minimal property and was applied to several problems of both algorithmic and combinatorial nature. In the present paper, we first survey recent results related to this notion and then apply it to two algorithmic graph problems: Hamiltonian cycle and Vertex k-colorability. In particular, we discover the first two boundary classes for the Hamiltonian cycle problem and prove that for any k > 3 there is a continuum of boundary classes for Vertex k-colorability.

The purpose of the conference is to bring together academics and professionals from all over the world to discuss the themes of the conference

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

This book constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Learning and Optimization, LION 8, which was held in Gainesville, FL, USA, in February 2014. The 33 contributions presented were carefully reviewed and selected for inclusion in this book. A large variety of topics are covered, such as algorithm configuration; multiobjective optimization; metaheuristics; graphs and networks; logistics and transportation; and biomedical applications.

This book constitutes the refereed proceedings of the 23rd Annual Symposium on Combinatorial Pattern Matching, CPM 2012, held in Helsinki, Finalnd, in July 2012. The 33 revised full papers presented together with 2 invited talks were carefully reviewed and selected from 60 submissions. The papers address issues of searching and matching strings and more complicated patterns such as trees, regular expressions, graphs, point sets, and arrays. The goal is to derive non-trivial combinatorial properties of such structures and to exploit these properties in order to either achieve superior performance for the corresponding computational problems or pinpoint conditions under which searches cannot be performed efficiently. The meeting also deals with problems in computational biology, data compression and data mining, coding, information retrieval, natural language processing, and pattern recognition.

*When a society needs to take a collective decision one could apply some aggregation method, particularly, voting. One of the main problems with voting is manipulation. We say a voting rule is vulnerable to manipulation if there exists at least one voter who can achieve a better voting result by misrepresenting his or her preferences. The popular approach to comparing manipulability of voting rules is defining complexity class of the corresponding manipulation problem. This paper provides a survey into manipulation complexity literature considering variety of problems with different assumptions and restrictions.*

The preemptive single machine scheduling problem of minimizing the total weighted completion time with equal processing times and arbitrary release dates is one of the four single machine scheduling problems with an open computational complexity status. In this paper we present lower and upper bounds for the exact solution of this problem based on the assignment problem. We also investigate properties of these bounds and worst-case behavior.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.