### Working paper

## Smart criticality

We consider the problem of computing the closest stable/unstable nonnegative matrix

to a given real matrix. The distance between matrices is measured in the Frobenius norm. The

problem is addressed for two types of stability: the Schur stability (the matrix is stable if its spectral

radius is smaller than one) and the Hurwitz stability (the matrix is stable if its spectral abscissa is

negative). We show that the closest unstable matrix can always be explicitly found. The problem

of computing the closest stable matrix to a nonnegative matrix is a hard problem even if the stable

matrix is not constrained to be nonnegative. Adding the nonnegativity constraint makes the problem

even more dicult. For the closest stable matrix, we present an iterative algorithm which converges

to a local minimum with a linear rate. It is shown that the total number of local minima can be

exponential in the dimension. Numerical results and the complexity estimates are presented.

We summarize some of the recent works, devoted to the study of one-dimensional (pseudo)group actions and codimension one foliations. We state a conjectural alternative for such actions (generalizing the already obtained results) and describe the properties in both alternative cases. We also discuss the generalizations for holomorphic one-dimensional actions. Finally, we state some open questions that seem to be already within the reach.

The present paper is devoted to the research into the topical questions of network evolution modeling considering the constant changes in the data environment as well as the data exchange rate. A two-level approach to the network community analysis based on the division into macro- and micro-levels of monitoring is suggested. Functionality of both levels is described. Suggestions for investigation and modeling of data flows in a network represented by a dynamical system of message senders and recipients are presented.

Nonlinear differential dynamic model of the relation between the branches of production was proposed. Mathematically, this model is expressed as a system of first-order ODE. Dynamic variables of the model – the value of the output of each branch of production. Each differential equation of the system includes independent growth and diminution of finished goods; growth and decline of production related to the production of allied industries. Two models were proposed: a model with Malthusian products growth (model with no restrictions on the amount of product), the model with the Verhulst limiting of the growth of output. The equilibrium points of dynamical systems, system stability were determined as well as the qualitative analysis of dynamic systems was made.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

The volume is dedicated to Stephen Smale on the occasion of his 80th birthday. Besides his startling 1960 result of the proof of the Poincaré conjecture for all dimensions greater than or equal to five, Smale’s ground breaking contributions in various fields in Mathematics have marked the second part of the 20th century and beyond. Stephen Smale has done pioneering work in differential topology, global analysis, dynamical systems, nonlinear functional analysis, numerical analysis, theory of computation and machine learning as well as applications in the physical and biological sciences and economics. In sum, Stephen Smale has manifestly broken the barriers among the different fields of mathematics and dispelled some remaining prejudices. He is indeed a universal mathematician. Smale has been honored with several prizes and honorary degrees including, among others, the Fields Medal(1966), The Veblen Prize (1966), the National Medal of Science (1996) and theWolf Prize (2006/2007).

Polynomial dynamical systems describing interacting particles in the plane are studied. A method replacing integration of a polynomial multi-particle dynamical system by finding polynomial solutions of partial differential equations is introduced. The method enables one to integrate a wide class of polynomial multi-particle dynamical systems. The general solutions of certain dynamical systems related to linear second-order partial differential equations are found. As a by-product of our results, new families of orthogonal polynomials are derived.

The modern qualitative theory of dynamical systems is thoroughly intertwined with the fairly young science of topology. Many strange constructions of topology are found sooner or later in dynamics of discrete or continuous dynamical systems. In the present paper we show that the wild Fox-Artin arc emerges naturally in invariant sets of dynamical systems.

Conference covers both fundamental problems ofthe theory, and application to research of complex organizational and technical systems.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.