• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

A Multi-agent genetic algorithm for multi-objective optimization

P. 1391-1395.
Akopov A. S., Hevencev M.A.

Abstract— In this paper a new multi-agent genetic algorithm for multi-objective optimization (MAGAMO) is presented.  The algorithm based on the dynamical interaction of synchronized agents which are interdepended genetic algorithms (GAs) having own separate evolutions of their populations. This approach has some similarities with well known “island model” of GA. In both methods is used a migration of individuals from agents (“islands”) to the main process (“continent”). In contrast, the intelligent agents in MAGAMO are able to decompose the dimensions space to form evolutions of subpopulations (instead of distribution of initial population as in the standard “island model”). In the same time, the main (central) process is responsible for the coordination of agents only and their selection according Pareto rules (without evolution). Intelligent agents seek local suboptimal solutions for a global optimization, which will be completed in the result of the interaction of all agents. In the result of this, the amount of needed recalculating the fitness-functions can be significantly reduced. It is especially important for the multi-objective optimization related to a large-scale problem.  Besides, the proposed approximating approach allows solving complex optimization problems for real big systems (like an oil company, plants, corporations, etc.).