• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Modular contractions and their application

P. 65-92.

The notion of a metric modular on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces and Orlicz spaces, were recently introduced and studied by the author [Chistyakov: Dokl. Math. 73(1):32–35, 2006 and Nonlinear Anal. 72(1):1–30, 2010]. In this chapter we present yet one more application of the metric modulars theory to the existence of fixed points of modular contractive maps in modular metric spaces. These are related to contracting generalized average velocities rather than metric distances, and the successive approximations of fixed points converge to the fixed points in the modular sense, which is weaker than the metric convergence. We prove the existence of solutions to a Carathéodory-type differential equation with the right-hand side from the Orlicz space. Metric modular, Modular convergence, Modular contraction, Fixed point, Mapping of finite f-variation, Carathéodory-type differential equation

In book

Modular contractions and their application
Iss. 32. NY: Springer, 2013.