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1 Introduction 6

The metric fixed-point theory [14, 18] and its variations [15] are far-reaching 7

developments of Banach’s contraction principle, where metric conditions on the un- 8

derlying space and maps under consideration play a fundamental role. This chapter 9

addresses fixed points of nonlinear maps in modular spaces introduced recently 10

by the author [3–10] as generalizations of Orlicz spaces and classical modular 11

spaces [19, 20, 22–27], where modular structures (involving nonlinearities with 12

more rapid growth than power-like functions), play the crucial role. Under different 13

contractive assumptions and the supplementary Δ2-condition on modulars fixed- 14

point theorems in classical modular linear spaces were established in [1, 16, 17]. 15

We begin with a certain motivation of the definition of a (metric) modular, 16

introduced axiomatically in [7, 9]. A simple and natural way to do it is to turn to 17

physical interpretations. Informally speaking, whereas a metric on a set represents 18

nonnegative finite distances between any two points of the set, a modular on a set 19

attributes a nonnegative (possibly, infinite valued) “field of (generalized) velocities”: 20

to each “time” λ>0 (the absolute value of) an average velocity wλ (x,y) is associated 21

in such a way that in order to cover the “distance” between points x,y ∈ X it takes 22

time λ to move from x to y with velocity wλ (x,y). Let us comment on this in more
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detail by exhibiting an appropriate example. If d(x,y)≥0 is the distance from x to y 23

and a number λ >0 is interpreted as time, then the value 24

wλ (x,y) =
d(x,y)

λ
(1)

is the average velocity, with which one should move from x to y during time λ , in 25

order to cover the distance d(x,y). The following properties of the quantity from 26

Eq. (1) are quite natural. 27

1. Two points x and y from X coincide (and d(x,y) = 0) if and only if any time 28

λ > 0 will do to move from x to y with velocity wλ (x,y) = 0 (i.e., no movement 29

is needed at any time). Formally, given x,y ∈ X , we have 30

x = y iff wλ (x,y) = 0 for all λ > 0 (nondegeneracy), (2)

where “iff” means as usual “if and only if”. 31

2. Assuming the distance function to be symmetric, d(x,y) = d(y,x), we find that 32

for any time λ > 0, the average velocity during the movement from x to y is the 33

same as the average velocity in the opposite direction, i.e., for any x,y ∈ X we 34

have 35

wλ (x,y) = wλ (y,x) for all λ > 0 (symmetry). (3)

3. The third property of Eq. (1), which is, in a sense, a counterpart of the triangle 36

inequality (for velocities!), is the most important. Suppose the movement from 37

x to y happens to be made in two different ways, but the duration of time is the 38

same in each case: (a) passing through a third point z ∈ X or (b) straightforward 39

from x to y. If λ is the time needed to get from x to z and μ is the time needed 40

to get from z to y, then the corresponding average velocities are wλ (x,z) (during 41

the movement from x to z) and wμ(z,y) (during the movement from z to y). The 42

total time needed for the movement in the case (a) is equal to λ + μ . Thus, in 43

order to move from x to y as in the case (b), one has to have the average velocity 44

equal to wλ+μ(x,y). Since (as a rule) the straightforward distance d(x,y) does 45

not exceed the sum of the distances d(x,z)+ d(z,y), it becomes clear from the 46

physical intuition that the velocity wλ+μ(x,y) does not exceed at least one of the 47

velocities wλ (x,z) or wμ(z,y). Formally, this is expressed as 48

wλ+μ(x,y)≤ max{wλ (x,z),wμ (z,y)} ≤ wλ (x,z)+wμ(z,y) (4)

for all points x,y,z ∈ X and all times λ ,μ > 0 (“triangle” inequality). In fact, these 49

inequalities can be verified rigorously: if, on the contrary, we assume that wλ (x,z)< 50

wλ+μ(x,y) and wμ(z,y)<wλ+μ(x,y), then multiplying the first inequality by λ , the 51

second inequality—by μ , summing the results and taking into account Eq. (1), we 52

find d(x,z) = λ wλ (x,z)< λ wλ+μ(x,y) and d(z,y) = μwμ(z,y)< μwλ+μ(x,y), and 53

it follows that d(x,z)+d(z,y)< (λ +μ)wλ+μ(x,y) = d(x,y), which contradicts the 54

triangle inequality for d. 55
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Inequality (4) can be obtained in a little bit more general situation. Let f : 56

(0,∞) → (0,∞) be a function from the set of positive reals into itself such that the 57

function λ �→ λ/ f (λ ) is nonincreasing on (0,∞). Setting wλ (x,y) = d(x,y)/ f (λ ) 58

(note that f (λ ) = λ in Eq. (1)), we have 59

wλ+μ(x,y)=
d(x,y)

f (λ+μ)
≤ d(x,z)+d(z,y)

f (λ+μ)
≤ λ

λ+μ
·d(x,z)

f (λ )
+

μ
λ+μ

·d(z,y)
f (μ)

≤ λ
λ + μ

wλ (x,z)+
μ

λ + μ
wμ(z,y) ≤ wλ (x,z)+wμ(z,y). (5)

A nonclassical example of “generalized velocities” satisfying Eqs. (2)–(4) is givenAQ1 60

by wλ (x,y) = ∞ if λ ≤ d(x,y) and wλ (x,y) = 0 if λ > d(x,y). 61

A (metric) modular on a set X is any one-parameter family w = {wλ}λ>0 of 62

functions wλ : X ×X → [0,∞] satisfying Eqs. (2)–(4). In particular, the family given 63

by Eq. (1) is the canonical (= natural) modular on a metric space (X ,d), which 64

can be interpreted as a field of average velocities. For a different interpretation 65

of modulars related to the joint generalized variation of univariate maps and their 66

relationships with classical modulars on linear spaces we refer to [9] (cf. also 67

Sect. 4). 68

The difference between a metric (= distance function) and a modular on a set 69

is now clearly seen: a modular depends on a positive parameter and may assume 70

infinite values; the latter property means that it is impossible (or prohibited) to move 71

from x to y in time λ , unless one moves with infinite velocity wλ (x,y) = ∞. In 72

addition (cf. Eq. (1)), the “velocity” wλ (x,y) is nonincreasing as a function of “time” 73

λ > 0. The knowledge of “average velocities” wλ (x,y) for all λ > 0 and x,y ∈ X 74

provides more information than simply the knowledge of distances d(x,y) between 75

x and y: the distance d(x,y) can be recovered as a “limit case” via the formula (again 76

cf. Eq. (1)): 77

d(x,y) = inf{λ > 0 : wλ (x,y)≤ 1}. 78

Now we describe briefly the main result of this chapter. Given a modular w on a 79

set X , we introduce the modular space X∗
w = X∗

w(x0) around a point x0 ∈ X as the set 80

of those x ∈ X , for which wλ (x,x0) is finite for some λ = λ (x)> 0. A map T : X∗
w → 81

X∗
w is said to be modular contractive if there exists a constant 0 < k < 1 such that for 82

all small enough λ > 0 and all x,y ∈ X∗
w we have wkλ (T x,Ty)≤ wλ (x,y). Our main 83

result (Theorem 6) asserts that if w is convex and strict, X∗
w is modular complete (the 84

emphasized notions will be introduced in the main text below) and T : X∗
w → X∗

w 85

is modular contractive, then T admits a (unique) fixed point: T x∗ = x∗ for some 86

x∗ ∈ X∗
w. The successive approximations of x∗ constructed in the proof of this result 87

converge to x∗ in the modular sense, which is weaker than the metric convergence. 88

In particular, Banach’s contraction principle follows if we take into account Eq. (1). 89

This chapter is organized as follows. In Sect. 2 we study modulars and convex 90

modulars and introduce two modular spaces. In Sect. 3 we introduce the notions of 91

modular convergence, modular limit and modular completeness and show that they 92

vchistyakov
Sticky Note
See the last page of the Uncorrected Proof.
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are “weaker” than the corresponding metric notions. These notions are illustrated 93

in Sect. 4 by examples. Section 5 is devoted to a fixed-point theorem for modular 94

contractions in modular complete modular metric spaces. This theorem is thenAQ2 95

applied in Sect. 6 to the existence of solutions of a Carathéodory-type ordinary 96

differential equation with the right-hand side from the Orlicz space Lϕ . Finally, 97

in Sect. 7 some concluding remarks are presented. 98

2 Modulars and Modular Spaces 99

In what follows X is a nonempty set, λ > 0 is understood in the sense that λ ∈ (0,∞) 100

and, in view of the disparity of the arguments, functions w : (0,∞)×X ×X → [0,∞] 101

will be also written as wλ (x,y) = w(λ ,x,y) for all λ > 0 and x, y ∈ X , so that w = 102

{wλ}λ>0 with wλ : X ×X → [0,∞]. 103

Definition 1 ([7,9]). A function w : (0,∞)×X ×X → [0,∞] is said to be a (metric) 104

modular on X if it satisfies the following three conditions: 105

(i) Given x, y ∈ X , x = y iff wλ (x,y) = 0 for all λ > 0 106

(ii) wλ (x,y) = wλ (y,x) for all λ > 0 and x, y ∈ X 107

(iii) wλ+μ(x,y)≤ wλ (x,z)+wμ(y,z) for all λ , μ > 0 and x, y, z ∈ X 108

If, instead of (i), the function w satisfies only 109

(i′) wλ (x,x) = 0 for all λ > 0 and x ∈ X 110

then w is said to be a pseudomodular on X , and if w satisfies (i′) and 111

(is) given x,y ∈ X , if there exists a number λ > 0, possibly depending on x and y, 112

such that wλ (x,y) = 0, then x = y 113

the function w is called a strict modular on X . 114

A modular (pseudomodular, strict modular) w on X is said to be convex if, instead 115

if (iii), for all λ ,μ > 0 and x,y,z ∈ X , it satisfies the inequality: 116

(iv) wλ+μ(x,y)≤
λ

λ+μ
wλ (x,z)+

μ
λ+μ

wμ(y,z) 117

A motivation of the notion of convexity for modulars, which may look unexpected 118

at first glance, was given in [9, Theorem 3.11], cf. also inequality (5); a further 119

generalization of this notion was presented in [8, Sect. 5]. 120

Given a metric space (X ,d) with metric d, two canonical strict modulars are 121

associated with it: wλ (x,y) = d(x,y) (denoted simply by d), which is independent 122

of the first argument λ and is a (nonconvex) modular on X in the sense of (i)–(iii), 123

and the convex modular Eq. (1), which satisfies (i), (ii) and (iv). Both modulars d 124

and Eq. (1) assume only finite values on X . 125

Clearly, if w is a strict modular, then w is a modular, which in turn implies w is a 126

pseudomodular on X , and similar implications hold for convex w. 127



UNCORRECTED
PROOF

Modular Contractions and Their Application

The essential property of a pseudomodular w on X (cf. [9, Sect. 2.3]) is that, for 128

any given x,y∈X , the function 0< λ �→wλ (x,y)∈ [0,∞] is nonincreasing on (0,∞), 129

and so, the limit from the right wλ+0(x,y) and the limit from the left wλ−0(x,y) exist 130

in [0,∞] and satisfy the inequalities: 131

wλ+0(x,y) ≤ wλ (x,y)≤ wλ−0(x,y). (6)

A convex pseudomodular w on X has the following additional property: given 132

x,y ∈ X , we have (cf. [9, Sect. 3.5]): 133

if 0 < μ ≤ λ , then wλ (x,y)≤
μ
λ

wμ(x,y)≤ wμ(x,y), (7)

i.e., functions λ �→ wλ (x,y) and λ �→ λ wλ (x,y) are nonincreasing on (0,∞). 134

Throughout this chapter we fix an element x0 ∈ X arbitrarily. 135

Definition 2 ([7, 9]). Given a pseudomodular w on X , the two sets 136

Xw ≡ Xw(x0) =
{

x ∈ X : wλ (x,x0)→ 0 as λ → ∞
}

137

and 138

X∗
w ≡ X∗

w(x0) =
{

x ∈ X : ∃λ = λ (x)> 0 such that wλ (x,x0)< ∞
}

139

are said to be modular spaces (around x0). 140

It is clear that Xw ⊂ X∗
w, and it is known (cf. [9, Sects. 3.1 and 3.2]) that this 141

inclusion is proper in general. It follows from [9, Theorem 2.6] that if w is a modular 142

on X , then the modular space Xw can be equipped with a (nontrivial) metric dw, 143

generated by w and given by 144

dw(x,y) = inf{λ > 0 : wλ (x,y)≤ λ}, x, y ∈ Xw. (8)

It will be shown later that dw is a well-defined metric on a larger set X∗
w. 145

If w is a convex modular on X , then according to [9, Sect. 3.5 and Theorem 3.6] 146

the two modular spaces coincide, Xw = X∗
w, and this common set can be endowed 147

with a metric d∗
w given by 148

d∗
w(x,y) = inf{λ > 0 : wλ (x,y)≤ 1}, x, y ∈ X∗

w; (9)

moreover, d∗
w is specifically equivalent to dw (see [9, Theorem 3.9]). By the 149

convexity of w, the function ŵλ (x,y) = λ wλ (x,y) is a modular on X in the sense 150

of (i)–(iii) and (cf. [9, Formula (3.3)]) 151

X∗
ŵ = X∗

w = Xw ⊃ Xŵ, (10)

where the last inclusion may be proper; moreover, dŵ = d∗
w on Xŵ. 152
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Even if w is a nonconvex modular on X , the quantity Eq. (9) is also defined for 153

all x,y ∈ X∗
w, but it has only few properties (cf. [9, Theorem 3.6]): d∗

w(x,x) = 0 and 154

d∗
w(x,y) = d∗

w(y,x). In this case we have (cf. [9, Theorem 3.9 and Example 3.10]): if 155

dw(x,y) < 1, then d∗
w(x,y)≤ dw(x,y), and if d∗

w(x,y)≥ 1, then dw(x,y)≤ d∗
w(x,y). 156

Let us illustrate the above in the case of a metric space (X ,d) with the two 157

canonical modulars d and w from Eq. (1) on it. We have: Xd = {x0} ⊂ X∗
d = Xw = 158

X∗
w = X , and given x,y ∈ X , dd(x,y) = d(x,y), d∗

d(x,y) = 0, dw(x,y) =
√

d(x,y), 159

d∗
w(x,y) = d(x,y) and d̂(x,y) = λ wλ (x,y) = d(x,y). Thus, the convex modular w 160

from Eq. (1) plays a more adequate role in restoring the metric space (X ,d) from w 161

(cf. d∗
w = d on Xw = X∗

w = X , whereas Xd ⊂ X∗
d = X , dd = d and d∗

d = 0), and so, 162

in what follows, any metric space (X ,d) will be considered equipped only with the 163

modular Eq. (1). This convention is also justified as follows. 164

Now we exhibit the relationship between convex and nonconvex modulars and 165

show that dw is a well-defined metric on X∗
w (and not only on Xw). If w is a (not 166

necessarily convex) modular on X , then the function (cf. Eq. (1) where d(x,y) plays 167

the role of a modular) 168

vλ (x,y) =
wλ (x,y)

λ
, λ > 0, x,y ∈ X , 169

is always a convex modular on X . In fact, conditions (i) and (ii) are clear for v, and, 170

as for (iv), we have, by virtue of (iii) for w, 171

vλ+μ(x,y)=
wλ+μ(x,y)

λ + μ
≤ wλ (x,z)+wμ(y,z)

λ + μ

=
λ

λ+μ
·wλ (x,z)

λ
+

μ
λ+μ

·wμ(y,z)

μ
=

λ
λ+μ

vλ (x,z)+
μ

λ+μ
vμ(y,z).

Moreover, because w = v̂, we find from Eq. (10) that Xw ⊂ X∗
w = Xv = X∗

v . Since 172

d∗
v (x,y) = inf{λ > 0 : wλ (x,y)/λ ≤ 1}= dw(x,y) for all x,y ∈ X∗

w, i.e., d∗
v = dw on 173

X∗
w and d∗

v is a metric on X∗
v = X∗

w, then we conclude that dw is a well-defined metric 174

on X∗
w (the same conclusion follows immediately from [8, Theorem 1]) with X ′ = 175

X∗
w). This property distinguishes our theory of modulars from the classical theory: 176

if ρ is a classical modular on a linear space X in the sense of Musielak and Orlicz 177

[22] and wλ (x,y) = ρ((x− y)/λ ), λ >0, x,y ∈ X , then the expression vλ (x,y) = 178

(1/λ )wλ (x,y) = (1/λ )ρ((x− y)/λ ) is not allowed as a classical modular on X . 179

Since v is convex and d∗
v = dw on X∗

w, given x,y ∈ X∗
w, by virtue of [9, Theorem 3.9], 180

we have 181

dw(x,y)< 1 iff dv(x,y)< 1, and dw(x,y)≤ dv(x,y) ≤
√

dw(x,y); 182

183

dw(x,y)≥ 1 iff dv(x,y)≥ 1, and
√

dw(x,y)≤ dv(x,y)≤ dw(x,y). 184
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More metrics can be defined on X∗
w for a given modular w on X in the following 185

general way (cf. [8, Theorem 1]): if R+ = [0,∞) and κ : R+ → R
+ is superadditive 186

(i.e. κ(λ )+κ(μ)≤ κ(λ +μ) for all λ ,μ ≥ 0) and such that κ(u)> 0 for u > 0 and 187

κ(+0) = limu→+0 κ(u) = 0, then the function dκ ,w(x,y) = inf{λ > 0 : wλ (x,y) ≤ 188

κ(λ )} is a well-defined metric on X∗
w. 189

Given a pseudomodular (modular, strict modular, convex or not) w on X , λ > 0 190

and x,y ∈ X , we define the left and right regularizations of w by 191

w−
λ (x,y) = wλ−0(x,y) and w+

λ (x,y) = wλ+0(x,y). 192

Since, by Eq. (6), w+
λ (x,y)≤ wλ (x,y)≤ w−

λ (x,y), and 193

w−
λ2
(x,y)≤ wλ (x,y)≤ w+

λ1
(x,y) for all 0 < λ1 < λ < λ2, (11)

it is a routine matter to verify that w− and w+ are pseudomodulars (modulars, strict 194

modulars, convex or not, respectively) on X , Xw− = Xw = Xw+ , X∗
w− = X∗

w = X∗
w+ , 195

dw− = dw = dw+ on Xw and d∗
w− = d∗

w = d∗
w+ on X∗

w. For instance, let us check 196

the last two equalities for metrics. Given x,y ∈ X∗
w, by virtue of Eq. (6), we find 197

d∗
w−(x,y)≥ d∗

w(x,y)≥ d∗
w+(x,y). In order to see that d∗

w−(x,y)≤ d∗
w(x,y), we let λ > 198

d∗
w(x,y) be arbitrary and choose μ such that d∗

w(x,y) < μ < λ , which, by Eq. (11), 199

gives w−
λ (x,y) ≤ wμ(x,y) ≤ 1, and so, d∗

w−(x,y) ≤ λ , and then let λ → d∗
w(x,y). In 200

order to prove that d∗
w(x,y)≤ d∗

w+(x,y), we let λ > d∗
w+(x,y) be arbitrary and choose 201

μ such that d∗
w+(x,y)< μ < λ , which, by Eq. (11), implies wλ (x,y)≤ w+

μ (x,y)≤ 1, 202

and so, d∗
w(x,y)≤ λ , and then let λ → d∗

w+(x,y). 203

In this way we have seen that the regularizations provide no new modular spaces 204

as compared to Xw and X∗
w and no new metrics as compared to dw and d∗

w. The right 205

regularization will be needed in Sect. 5 for the characterization of metric Lipschitz 206

maps in terms of underlying modulars. 207

3 Sequences in Modular Spaces and Modular Convergence 208

The notions of modular convergence, modular limit, modular completeness, etc., 209

which we study in this section, are known in the classical theory of modulars on 210

linear spaces (e.g., [20, 22, 25, 27]). Since the theory of (metric) modulars from [7, 211

8, 10] is significantly more general than the classical theory, the notions mentioned 212

above do not carry over to metric modulars in a straightforward way and ought to 213

be reintroduced and justified. 214

Definition 3. Given a pseudomodular w on X , a sequence of elements {xn} ≡ 215

{xn}∞
n=1 from Xw or X∗

w is said to be modular convergent (more precisely, w- 216

convergent) to an element x ∈ X if there exists a number λ > 0, possibly depending 217

on {xn} and x, such that limn→∞ wλ (xn,x) = 0. This will be written briefly as 218
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xn
w→ x (as n → ∞), and any such element x will be called a modular limit of the 219

sequence {xn}. 220

Note that if limn→∞ wλ (xn,x) = 0, then by virtue of the monotonicity of the 221

function λ ′ �→ wλ ′(xn,x), we have limn→∞ wμ(xn,x) = 0 for all μ ≥ λ . 222

It is clear for a metric space (X ,d) and the modular Eq. (1) on it that the metric 223

convergence and the modular convergence in X coincide. 224

We are going to show that the modular convergence is much weaker than the 225

metric convergence (in the sense to be made more precise below). First, we study to 226

what extent the above definition is correct, and what is the relationship between the 227

modular and metric convergences in Xw and X∗
w. 228

Theorem 1. Let w be a pseudomodular on X. We have: 229

(a) The modular spaces Xw and X∗
w are closed with respect to the modular 230

convergence, i.e., if {xn} ⊂ Xw (or X∗
w), x ∈ X and xn

w→ x, then x ∈ Xw (or 231

x ∈ X∗
w, respectively). 232

(b) If w is a strict modular on X, then the modular limit is determined uniquely (if 233

it exists). 234

Proof. (a) Since xn
w→ x, there exists a λ0 =λ0({xn},x)> 0 such that wλ0

(xn,x)→ 0 235

as n → ∞. 236

1. First we treat the case when {xn} ⊂ Xw. Let ε > 0 be arbitrarily fixed. Then 237

there is an n0 = n0(ε) ∈ N such that wλ0
(xn0 ,x) ≤ ε/2. Since xn0 ∈ Xw = 238

Xw(x0), we have wλ (xn0 ,x0) → 0 as λ → ∞, and so, there exists a λ1 = 239

λ1(ε) > 0 such that wλ1
(xn0 ,x0) ≤ ε/2. Then conditions (iii) and (ii) from 240

Definition 1 imply 241

wλ0+λ1
(x,x0)≤ wλ0

(x,xn0)+wλ1
(x0,xn0)≤ ε. 242

The function λ �→ wλ (x,x0) is nonincreasing on (0,∞), and so, 243

wλ (x,x0)≤ wλ0+λ1
(x,x0)≤ ε for all λ ≥ λ0 +λ1, 244

implying wλ (x,x0)→ 0 as λ → ∞, i.e., x ∈ Xw. 245

2. Now suppose that {xn} ⊂ X∗
w. Then there exists an n0 ∈ N such that 246

wλ0
(xn0 ,x) does not exceed 1. Since xn0 ∈ X∗

w = X∗
w(x0), there is a λ1 > 0 247

such that wλ1
(xn0 ,x0)< ∞. Now it follows from conditions (iii) and (ii) that 248

wλ0+λ1
(x,x0)≤ wλ0

(x,xn0)+wλ1
(x0,xn0)< ∞, 249

and so, x ∈ X∗
w. 250

(b) Let {xn} ⊂ Xw or X∗
w and x,y ∈ X be such that xn

w→ x and xn
w→ y. By the 251

definition of the modular convergence, there exist λ = λ ({xn},x) > 0 and
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μ = μ({xn},y) > 0 such that wλ (xn,x) → 0 and wμ(xn,y) → 0 as n → ∞. By 252

conditions (iii) and (ii), 253

wλ+μ(x,y)≤ wλ (x,xn)+wμ(y,xn)→ 0 as n → ∞. 254

It follows that wλ+μ(x,y) = 0, and so, by condition (is) from Definition 1, we
get x = y. 
�

It was shown in [9, Theorem 2.13] that if w is a modular on X , then for {xn}⊂ Xw 255

and x ∈ Xw we have 256

lim
n→∞

dw(xn,x) = 0 iff lim
n→∞

wλ (xn,x) = 0 for all λ > 0, (12)

and so, the metric convergence (with respect to the metric dw) implies the modular 257

convergence (cf. Definition 3), but not vice versa in general. As the proof of [9, 258

Theorem 2.13] suggests, Eq. (12) is also true for {xn}⊂ X∗
w and x ∈X∗

w. An assertion 259

similar to Eq. (12) holds for Cauchy sequences from the modular spaces Xw and X∗
w. 260

Now we establish a result similar to Eq. (12) for convex modulars. 261

Theorem 2. Let w be a convex modular on X. Given a sequence {xn} from X∗
w (= 262

Xw) and an element x ∈ X∗
w, we have 263

lim
n→∞

d∗
w(xn,x) = 0 iff lim

n→∞
wλ (xn,x) = 0 for all λ > 0. 264

A similar assertion holds for Cauchy sequences with respect to d∗
w. 265

Proof. Step 1. Sufficiency. Given ε > 0, by the assumption, there exists a number 266

n0(ε) ∈N such that wε (xn,x)≤ 1 for all n ≥ n0(ε), and so, the Definition (9) of 267

d∗
w implies d∗

w(xn,x)≤ ε for all n ≥ n0(ε). 268

Necessity. First, suppose that 0 < λ ≤ 1. Given ε > 0, we have either (a) ε < λ or 269

(b) ε ≥ λ . In case (a), by the assumption, there is an n0(ε) ∈N such that d∗
w(xn,x)< 270

ε2 for all n ≥ n0(ε), and so, by the definition of d∗
w, wε2(xn,x)≤ 1 for all n ≥ n0(ε). 271

Since ε2 < λ 2 ≤ λ and ε < λ , inequality (7) yields 272

wλ (xn,x)≤ ε2

λ
wε2(xn,x)≤ ε

λ
ε < ε for all n ≥ n0(ε). 273

In case (b) we set n1(ε) = n0(λ/2), where n0(·) is as above. Then, as we have just 274

established, wλ (xn,x)< λ/2 ≤ ε/2 < ε for all n ≥ n1(ε). 275

Now, assume that λ > 1. Again, given ε > 0, we have either (a) ε < λ or (b) 276

ε ≥ λ . In case (a) there is an N0(ε) ∈ N such that d∗
w(xn,x) < ε for all n ≥ N0(ε), 277

and so, wε (xn,x)≤ 1 for all n ≥ N0(ε). Since ε < λ and λ > 1, by virtue of Eq. (7), 278

we find 279

wλ (xn,x)≤ ε
λ

wε (xn,x)≤ ε
λ

< ε for all n ≥ N0(ε). 280
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In case (b) we put N1(ε) = N0(λ/2), where N0(·) is as above. Then it follows that 281

wλ (xn,x)< λ/2 ≤ ε/2 < ε for all n ≥ N1(ε). 282

Thus, we have shown that wλ (xn,x)→ 0 as n → ∞ for all λ > 0. 283

Step 2. The assertion for Cauchy sequences is of the form 284

lim
n,m→∞

d∗
w(xn,xm) = 0 iff lim

n,m→∞
wλ (xn,xm) = 0 for all λ > 0; 285

its proof is similar to the one given in Step 1 with suitable modifications. 286


�
Theorem 2 shows, in particular, that in a metric space (X ,d) with modular Eq. (1) 287

on it the metric and modular convergences are equivalent. 288

Definition 4. A pseudomodular w on X is said to satisfy the (sequential) Δ2- 289

condition (on X∗
w) if the following condition holds: given a sequence {xn} ⊂ X∗

w 290

and x ∈ X∗
w, if there exists a number λ > 0, possibly depending on {xn} and x, such 291

that limn→∞ wλ (xn,x) = 0, then limn→∞ wλ/2(xn,x) = 0. 292

A similar definition applies with X∗
w replaced by Xw. 293

In the case of a metric space (X ,d) the modular Eq. (1) clearly satisfies the Δ2- 294

condition on X . 295

The following important observation, which generalizes the corresponding result 296

from the theory of classical modulars on linear spaces (cf. [22, I,5.2.IV]), provides 297

a criterion for the metric and modular convergences to coincide. 298

Theorem 3. Given a modular w on X, we have the metric convergence on X∗
w (with 299

respect to dw if w is arbitrary, and with respect to d∗
w if w is convex) coincides with 300

the modular convergence iff w satisfies the Δ2-condition on X∗
w. 301

Proof. Let {xn} ⊂ X∗
w and x ∈ X∗

w be given. We know from Eq. (12) and Theorem 2 302

that the metric convergence (with respect to dw if w is a modular or with respect to 303

d∗
w if w is a convex modular) of xn to x is equivalent to 304

lim
n→∞

wλ (xn,x) = 0 for all λ > 0. (13)

(⇒) Suppose that the metric convergence coincides with the modular conver- 305

gence on X∗
w. If there exists a λ0 > 0 such that wλ0

(xn,x) → 0 as n → ∞, then xn is 306

modular convergent to x, and so, xn converges to x in metric (dw or d∗
w). It follows 307

that Eq. (13) holds implying, in particular, wλ0/2(xn,x) → 0 as n → ∞, and so, w 308

satisfies the Δ2-condition. 309

(⇐) By virtue of Eq. (13), the metric convergence on X∗
w always implies the 310

modular convergence, and so, it suffices to verify the converse assertion, namely: 311

if xn
w→ x, then Eq. (13) holds. In fact, if xn

w→ x, then wλ0
(xn,x) → 0 as n → ∞ 312

for some constant λ0 = λ0({xn},x)> 0. The Δ2-condition implies wλ0/2(xn,x)→ 0 313

as n → ∞, and so, the induction yields wλ0/2 j (xn,x) → 0 as n → ∞ for all j ∈ N.
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Now, given λ > 0, there exists a j = j(λ ) ∈ N such that λ > λ0/2 j. By the 314

monotonicity of λ �→ wλ (xn,x), we have 315

wλ (xn,x)≤ wλ0/2 j(xn,x)→ 0 as n → ∞. 316

By the arbitrariness of λ > 0, condition (13) follows. 
�
Definition 5. Given a modular w on X , a sequence {xn} ⊂ X∗

w is said to be 317

modular Cauchy (or w-Cauchy) if there exists a number λ = λ ({xn}) > 0 such 318

that wλ (xn,xm)→ 0 as n,m → ∞, i.e., 319

∀ε > 0 ∃n0(ε) ∈ N such that ∀n ≥ n0(ε), m ≥ n0(ε): wλ (xn,xm)≤ ε . 320

It follows from Theorem 2 (Step 2 in its proof) and Definition 5 that a sequence 321

from X∗
w, which is Cauchy in metric dw or d∗

w, is modular Cauchy. 322

Note that a modular convergent sequence is modular Cauchy. In fact, if xn
w→ x, 323

then wλ (xn,x) → 0 as n → ∞ for some λ > 0, and so, for each ε > 0, there exists 324

an n0(ε) ∈N such that wλ (xn,x)≤ ε/2 for all n ≥ n0(ε). It follows from (iii) that if 325

n,m≥ n0(ε), then w2λ (xn,xm)≤wλ (xn,x)+wλ (xm,x)≤ ε , which implies that {xn} 326

is modular Cauchy. 327

The following definition will play an important role below. 328

Definition 6. Given a modular w on X , the modular space X∗
w is said to be modular 329

complete (or w-complete) if each modular Cauchy sequence from X∗
w is modular 330

convergent in the following (more precise) sense: if {xn} ⊂ X∗
w and there exists a 331

λ = λ ({xn}) > 0 such that limn,m→∞ wλ (xn,xm) = 0, then there exists an x ∈ X∗
w 332

such that limn→∞ wλ (xn,x) = 0. 333

The notions of modular convergence, modular limit and modular completeness, 334

introduced above, are illustrated by examples in the next section. It is clear from 335

Eq. (1) that for a metric space (X ,d) these notions coincide with respective notions 336

in the metric space setting. 337

4 Examples of Metric and Modular Convergences 338

We begin with recalling certain properties of ϕ-functions and convex functions on 339

the set of all nonnegative reals R+ = [0,∞). 340

A function ϕ : R+ → R
+ is said to be a ϕ-function if it is continuous, 341

nondecreasing and unbounded (and so, ϕ(∞)≡ limu→∞ ϕ(u) = ∞) and assumes the 342

value zero only at zero: ϕ(u) = 0 iff u = 0. 343

If ϕ : R+ → R
+ is a convex function such that ϕ(u) = 0 iff u = 0, then it is 344

(automatically) continuous, strictly increasing and unbounded, and so, it is a convex 345

ϕ-function. Also, ϕ is superadditive: ϕ(u1)+ϕ(u2)≤ϕ(u1+u2) for all u1,u2 ∈R
+

346

(cf. [19, Sect. I.1]). Moreover, ϕ admits the inverse function ϕ−1 : R+ →R
+, which 347
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is continuous, strictly increasing, ϕ−1(u) = 0 iff u = 0, ϕ−1(∞) = ∞, and which is 348

subadditive: ϕ−1(u1+u2)≤ ϕ−1(u1)+ϕ−1(u2) for all u1,u2 ∈R
+. The function ϕ 349

is said to satisfy the Δ2-condition at infinity (cf. [19, Sect. I.4]) if there exist constants 350

K > 0 and u0 ≥ 0 such that ϕ(2u)≤ Kϕ(u) for all u ≥ u0.AQ3 351

4.1. Let the triple (M,d,+) be a metric semigroup, i.e., the pair (M,d) is a metric 352

space with metric d, the pair (M,+) is an Abelian semigroup with respect 353

to the operation of addition + and d is translation invariant in the sense 354

that d(p + r,q + r) = d(p,q) for all p,q,r ∈ M. Any normed linear space 355

(M, | · |) is a metric semigroup with the induced metric d(p,q) = |p − q|, 356

p,q ∈ M and the addition operation + from M. If K ⊂ M is a convex cone 357

(i.e., p+ q,λ p ∈ K whenever p,q ∈ K and λ ≥ 0), then the triple (K,d,+) 358

is also a metric semigroup. A nontrivial example of a metric semigroup is 359

as follows (cf. [12, 26]). Let (Y, | · |) be a real normed space and M be the 360

family of all nonempty closed bounded convex subsets of Y equipped with the 361

Hausdorff metric d given by d(P,Q)=max{e(P,Q),e(Q,P)}, where P,Q∈M 362

and e(P,Q) = supp∈P infq∈Q |p− q|. Given P,Q ∈ M, we define P⊕Q as the 363

closure in Y of the Minkowski sum P+Q = {p+ q : p ∈ P, q ∈ Q}. Then the 364

triple (M,d,⊕) is a metric semigroup (actually, M is an abstract convex cone). 365

For more information on metric semigroups and their special cases, abstract 366

convex cones, including examples, we refer to [5, 6, 9, 10] and references 367

therein. 368

Given a closed interval [a,b]⊂ R with a < b, we denote by X = M[a,b] the 369

set of all mappings x : [a,b]→ M. If ϕ is a convex ϕ-function on R
+, we define 370

a function w : (0,∞)×X×X→ [0,∞] for all λ > 0 and x,y ∈ X by (note that 371

w depends on ϕ) 372

wλ (x,y) = sup
π

m

∑
i=1

ϕ

(
d
(
x(ti)+ y(ti−1),x(ti−1)+ y(ti)

)

λ ·(ti − ti−1)

)

·(ti − ti−1), (14)

where the supremum is taken over all partitions π = {ti}m
i=1 of the interval 373

[a,b], i.e., m ∈ N and a = t0 < t1 < t2 < · · · < tm−1 < tm = b. It was shown in 374

[5, Sects. 3 and 4] that w is a convex pseudomodular on X. Thus, given x0 ∈ M, 375

the modular space X
∗
w = X

∗
w(x0) (here x0 denotes also the constant mapping 376

x0(t) = x0 for all t ∈ [a,b]), which was denoted in [5, Eq. (3.20) and Sect. 4.1] 377

by GVϕ([a,b];M) and called the space of mappings of bounded generalized 378

ϕ-variation, is well defined and, by the translation invariance of d on M, we 379

have x ∈ X
∗
w = GVϕ([a,b];M) iff x : [a,b] → M and there exists a constant 380

λ = λ (x)> 0 such that 381

wλ (x,x0) = sup
π

m

∑
i=1

ϕ

(
d
(
x(ti),x(ti−1)

)

λ (ti − ti−1)

)

(ti − ti−1)< ∞. (15)
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Note that wλ (x,x0) from Eq. (15) is independent of x0 ∈ M; this value is called 382

the generalized ϕλ -variation of x, where ϕλ (u) = ϕ(u/λ ), u ∈ R
+. Since 383

w satisfies on X conditions (i′), (ii) and (iv) (and not (i) in general) from 384

Definition 1, the quantity d∗
w from Eq. (9) is only a pseudometric on X

∗
w and, in 385

particular, only d∗
w(x,x) = 0 holds for x ∈ X

∗
w (note that d∗

w(x,y) was denoted 386

by Δϕ(x,y) in [5, Equality (4.5)]). 387

4.2. In order to “turn” Eq. (14) into a modular, we fix an x0 ∈ M and set X = {x : 388

[a,b]→ M | x(a) = x0} ⊂ X. We assert that w from Eq. (14) is a strict convex 389

modular on X . In fact, given x,y ∈ X and t,s ∈ [a,b] with t �= s, it follows from 390

Eq. (14) that 391

ϕ

(
d
(
x(t)+ y(s),x(s)+ y(t)

)

λ |t − s|)

)

|t − s| ≤ wλ (x,y), 392

and so, by the translation invariance of d and the triangle inequality, 393

|d(x(t),y(t))− d(x(s),y(s))|≤d(x(t)+y(s),x(s)+y(t))

≤λ |t − s|ϕ−1

(
wλ (x,y)
|t − s|

)

. (16)

Now, if we suppose that wλ (x,y) = 0 for some λ > 0, then for all t ∈ [a,b], 394

t �= s = a, we get (note that x(a) = y(a) = x0) 395

d(x(t),y(t)) = |d(x(t),y(t))− d(x(a),y(a))| ≤ 0. 396

Thus, x(t) = y(t) for all t ∈ [a,b], and so, x = y as elements of X . 397

It is clear for the modular space X∗
w = X∗

w(x0) that 398

X∗
w = X

∗
w ∩X = GV

ϕ
([a,b];M)∩X , (17)

i.e., x ∈ X∗
w iff x : [a,b] → M, x(a) = x0 and Eq. (15) holds for some λ > 0. 399

Moreover, the function d∗
w from Eq. (9) is a metric on X∗

w. 400

4.3. In this section we show that if (M,d,+) is a complete metric semigroup (i.e. 401

(M,d) is complete as a metric space), then the modular space X∗
w from Eq. (17) 402

is modular complete in the sense of Definition 6. 403

Let {xn} ⊂ X∗
w be a w-Cauchy sequence, so that wλ (xn,xm)→ 0 as n,m → 404

∞ for some constant λ = λ ({xn}) > 0. Given n,m ∈ N and t ∈ [a,b], t �= a, 405

it follows from Eq. (16) with x = xn, y = xm and s = a that (again note that 406

xn(a) = x0 for all n ∈ N) 407

d(xn(t),xm(t))≤ λ (t − a)ϕ−1

(
wλ (xn,xm)

t − a

)

. 408
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This estimate, the modular Cauchy property of {xn}, the continuity of ϕ−1
409

and the completeness of (M,d,+) imply the existence of an x : [a,b] → M, 410

x(a) = x0 (and so, x ∈ X), such that the sequence {xn} converges pointwise 411

on [a,b] to x, i.e., limn→∞ d(xn(t),x(t)) = 0 for all t ∈ [a,b]. We assert 412

that limn→∞ wλ (xn,x) = 0. By the (sequential) lower semicontinuity of the 413

functional wλ (·, ·) from Eq. (14) (cf. [5, Assertion (4.8) on p. 27]), we get 414

wλ (xn,x)≤ liminf
m→∞

wλ (xn,xm) for all n ∈N. (18)

Now, given ε > 0, by the modular Cauchy condition for {xn}, there is an 415

n0(ε) ∈N such that wλ (xn,xm)≤ ε for all n ≥ n0(ε) and m ≥ n0(ε), and so, 416

limsup
m→∞

wλ (xn,xm)≤ sup
m≥n0(ε)

wλ (xn,xm)≤ ε for all n ≥ n0(ε). 417

Since the limit inferior does not exceed the limit superior (for any real se- 418

quences), it follows from the last displayed line and Eq. (18) that wλ (xn,x)≤ ε 419

for all n ≥ n0(ε), i.e., wλ (xn,x)→ 0 as n→ ∞. Finally, since, by Theorem 1(a), 420

X∗
w is closed with respect to the modular convergence, we infer that x ∈ X∗

w, 421

which was to be proved. 422

4.4. In order to be able to calculate explicitly, for the sake of simplicity we assume 423

furthermore that M = R with d(p,q) = |p − q|, p,q ∈ R, and the function 424

ϕ satisfies the Orlicz condition at infinity: ϕ(u)/u → ∞ as u → ∞. In this 425

case the value w1(x,0) (cf. Eq. (15) with λ = 1) is known as the ϕ-variation 426

of the function x : [a,b] → R (in the sense of F. Riesz, Yu. T. Medvedev and 427

W. Orlicz), the function x with w1(x,0) < ∞ is said to be of bounded ϕ- 428

variation on [a,b], and we have 429

wλ (x,y) = wλ (x− y,0) = w1

(
x− y

λ
,0

)

, λ > 0, x,y ∈ X= R
[a,b]. (19)

Denote by AC[a,b] the space of all absolutely continuous real-valued functions 430

on [a,b] and by L1[a,b] the space of all (equivalence classes of) Lebesgue 431

summable functions on [a,b]. 432

The following criterion is known for functions x : [a,b] → R to be in the 433

space GVϕ [a,b] = X
∗
w (for more details see [2], [5, Sects. 3 and 4], [11], [20, 434

Sect. 2.4], [21]): x ∈ GVϕ [a,b] iff wλ (x,0) = w1(x/λ ,0) < ∞ for some λ = 435

λ (x) > 0 (i.e., x/λ is of bounded ϕ-variation on [a,b]) iff x ∈ AC[a,b] and 436

its derivative x′ ∈ L1[a,b] (defined almost everywhere on [a,b]) satisfies the 437

condition: 438

wλ (x,x0) = wλ (x,0) =
∫ b

a
ϕ

(
|x′(t)|

λ

)

dt < ∞, x0 ∈ R. (20)
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Given x0 ∈R, we set X = {x : [a,b]→ R | x(a) = x0}, and so (cf. Eq. (17)), 439

X∗
w = X∗

w(x0) = {x ∈ GV
ϕ

[a,b] : x(a) = x0}. (21)

Thus, the modular w is strict and convex on X and the modular space Eq. (21) 440

is modular complete. Note that X∗
w is not a linear subspace of GVϕ [a,b], which 441

is a normed Banach algebra (cf. [3, Theorem 3.6]). 442

4.5. Here we present an example when the metric and modular convergences 443

coincide. This example is a modification of Example 3.5(c) from [5]. We set 444

[a,b] = [0,1], M = R and ϕ(u) = eu − 1 for u ∈ R
+. Clearly, ϕ satisfies the 445

Orlicz condition but does not satisfy the Δ2-condition at infinity. 446

Given a number α > 0, we define a function xα : [0,1]→ R by 447

xα(t) = αt(1− logt) if 0 < t ≤ 1 and xα(0) = 0. 448

Since x′α(t) = −α logt for 0 < t ≤ 1, by Eq. (20), for any number λ > 0 we 449

find 450

wλ (xα ,0) =
∫ 1

0
ϕ

(
|x′α(t)|

λ

)

dt =
∫ 1

0

dt

tα/λ − 1 =

⎧
⎨

⎩

∞ if 0 < λ ≤ α,

α
λ −α

if λ > α.
451

It follows that the modular w can take infinite values (although it is strict) and 452

that xα ∈ X∗
w = X∗

w(0) for all α > 0. Also, we have 453

d∗
w(xα ,0) = inf{λ > 0 : wλ (xα ,0)≤ 1}= 2α. 454

Thus, if we set α = α(n) = 1/n and xn = xα(n) for n ∈ N, then we find that 455

d∗
w(xn,0) → 0 as n → ∞ and wλ (xn,0) → 0 as n → ∞ for all λ > 0, and, in 456

accordance with Theorem 2, these two convergences are equivalent. 457

4.6. Here we expose an example when the modular convergence is weaker than the 458

metric convergence. Let [a,b], M and ϕ be as in Example 4.5. 459

Given 0 ≤ β ≤ 1, we define a function xβ : [0,1]→ R as follows: 460

xβ (t) = t − (t +β ) log(t +β )+β logβ if β > 0 and 0 ≤ t ≤ 1 461

and 462

x0(t) = t − t logt if 0 < t ≤ 1 and x0(0) = 0. 463

Since x′β (t) =− log(t +β ) for β > 0 and t ∈ [0,1], we have 464

|x′β (t)|=− log(t+β ) if 0≤ t ≤ 1−β , and |x′β (t)|= log(t+β ) if 1−β ≤ t ≤ 1, 465
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and so, by virtue of Eq. (20), given λ > 0, we find 466

wλ (xβ ,0) =
∫ 1

0
ϕ(|x′β (t)|/λ )dt = I1 + I2 − 1, β > 0, 467

where 468

I1 =
∫ 1−β

0

dt

(t +β )1/λ =

⎧
⎨

⎩

λ
λ − 1

(
1−β (λ−1)/λ

)
if 0 < λ �= 1,

− logβ if λ = 1,
469

and 470

I2 =
∫ 1

1−β
(t +β )1/λ dt =

λ
λ + 1

(
(1+β )(λ+1)/λ − 1

)
for all λ > 0. 471

Also, wλ (x0,0) = ∞ if 0 < λ ≤ 1, and wλ (x0,0) = 1/(λ − 1) if λ > 1 (cf. 472

Example 4.5 with α = 1). Thus, xβ ∈ X∗
w = X∗

w(0) for all 0 ≤ β ≤ 1. 473

Clearly, xβ converges pointwise on [0,1] to x0 as β →+0 (actually, the first 474

inequality in the proof of [5, Lemma 4.1(a)] shows that the convergence is 475

uniform on [0,1]). 476

Now we calculate the values wλ (xβ ,x0) for λ > 0 and d∗
w(xβ ,x0) and 477

investigate their convergence to zero as β →+0. Since 478

(xβ − x0)
′(t) =− log(t +β )+ logt for 0 < t ≤ 1, 479

we have 480

|(xβ − x0)
′(t)|

λ
=

log(t +β )− logt
λ

= log

(
1+

β
t

)1/λ
, 481

and so, by virtue of Eqs. (19) and (20), 482

wλ (xβ ,x0) =
∫ 1

0
ϕ

(
|(xβ − x0)

′(t)|
λ

)

dt =−1+
∫ 1

0

(
1+

β
t

)1/λ
dt. 483

If 0 < λ ≤ 1, we have 484

(
1+

β
t

)1/λ
≥ 1+

β
t

and
∫ 1

0

(
1+

β
t

)
dt = ∞, 485

and so, wλ (xβ ,x0) = ∞ for all 0 < β ≤ 1 and 0 < λ ≤ 1. 486

Now suppose that λ > 1. Then 487

wλ (xβ ,x0) =−1+
∫ β

0

(
1+

β
t

)1/λ
dt +

∫ 1

β

(
1+

β
t

)1/λ
dt ≡−1+ II1+ II2, 488
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where 489

II1≤
∫ β

0

(
2β
t

)1/λ
dt = (2β )1/λ

∫ β

0
t−1/λ dt = (2β )1/λ · λ

λ − 1
·β 1−(1/λ ) =

=21/λ · λ β
λ − 1

→ 0 as β →+0

and 490

II2 ≤
∫ 1

β

(
1+

β
t

)
dt = (1−β )−β logβ → 1 as β →+0. 491

It follows that wλ (xβ ,x0)→ 0 as β →+0 for all λ > 1. 492

On the other hand, since wλ (xβ ,x0) = ∞ for all 0 < β ≤ 1 and 0 < λ ≤ 1 493

(as noticed above), we get d∗
w(xβ ,x0) = inf{λ > 0 : wλ (xβ ,x0) ≤ 1} ≥ 1, and 494

so, d∗
w(xβ ,x0) cannot converge to zero as β →+0. 495

Thus, if we set β = β (n) = 1/n and xn = xβ (n) for n ∈ N, then we find 496

d∗
w(xn,x0) �→ 0 as n → ∞, whereas wλ (xn,x0)→ 0 as n → ∞ only for λ > 1. 497

5 A Fixed-Point Theorem for Modular Contractions 498

Since convex modulars play the central role in this section, we concentrate mainly 499

on them. We begin with a characterization of d∗
w-Lipschitz maps on the modular 500

space X∗
w in terms of their generating convex modulars w. 501

Theorem 4. Let w be a convex modular on X and k > 0 be a constant. Given a 502

map T : X∗
w → X∗

w and x,y ∈ X∗
w, the Lipschitz condition d∗

w(T x,Ty) ≤ k d∗
w(x,y) is 503

equivalent to the following: wkλ+0(Tx,Ty)≤ 1 for all λ > 0 such that wλ (x,y)≤ 1. 504

Proof. First, note that, given c > 0, the function, defined by wλ (x,y) = wcλ (x,y), 505

λ > 0, x,y ∈ X , is also a convex modular on X and d∗
w = 1

c d∗
w: 506

d∗
w(x,y)=inf{λ >0 : wcλ (x,y)≤1}= inf{μ/c>0 : wμ(x,y)≤1}=

=
1
c

d∗
w(x,y) for all x,y ∈ X∗

w = X∗
w. (22)

Necessity. We may suppose that x �= y. For any c > k, by the assumption, we find 507

d∗
w(T x,Ty)≤ k d∗

w(x,y)< cd∗
w(x,y), whence d∗

w(T x,Ty)/c< d∗
w(x,y). It follows that 508

if λ > 0 is such that wλ (x,y) ≤ 1, then, by Eq. (9), d∗
w(x,y) ≤ λ implying, in view 509

of Eq. (22), 510

λ >
1
c

d∗
w(Tx,Ty) = inf{μ > 0 : wcμ(T x,Ty)≤ 1}, 511
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and so, wcλ (T x,Ty)≤ 1. Passing to the limit as c → k+ 0, we arrive at the desired 512

inequality wkλ+0(T x,Ty)≤ 1. 513

Sufficiency. By the assumption, the set {λ > 0 : wλ (x,y)≤ 1} is contained in the 514

set {λ > 0 : w+
kλ (T x,Ty) = wkλ+0(Tx,Ty)≤ 1}, and so, taking the infima, by virtue 515

of Eqs. (9), (22) and the equality d∗
w+ = d∗

w, we get 516

d∗
w(x,y)≥

1
k

d∗
w+(T x,Ty) =

1
k

d∗
w(T x,Ty), 517

which implies that T satisfies the Lipschitz condition with constant k. 
�
Theorem 4 can be reformulated as follows. Since (cf. [9, Theorem 3.8(a)] and 518

Eq. (9)), for λ ∗ = d∗
w(x,y), 519

(λ ∗,∞)⊂ {λ >0 : wλ (x,y)<1} ⊂ {λ >0 : wλ (x,y)≤1} ⊂ [λ ∗,∞), 520

we have d∗
w(T x,Ty)≤k d∗

w(x,y) iff wkλ (T x,Ty)≤ 1 for all λ >λ ∗=d∗
w(x,y). 521

For a metric space (X ,d) and the modular w from Eq. (1) on it, Theorem 4 gives 522

the usual Lipschitz condition: d(T x,Ty)/(kλ ) = wkλ (T x,Ty) ≤ 1 for all λ > 0 523

such that d(x,y)/λ = wλ (x,y) ≤ 1, i.e., d(Tx,Ty) ≤ kλ for all λ ≥ d(x,y), and 524

so, d(T x,Ty)≤ kd(x,y). 525

As a corollary of Theorem 4, we find that 526

if wkλ (T x,Ty)≤wλ (x,y) for all λ >0, then d∗
w(T x,Ty)≤k d∗

w(x,y); (23)

in fact, it suffices to note only that if λ > 0 is such that wλ (x,y)≤ 1, then, by Eq. (6), 527

wkλ+0(T x,Ty)≤ wkλ (T x,Ty)≤ wλ (x,y)≤ 1, and apply Theorem 4. 528

Now we briefly comment on dw-Lipschitz maps on X∗
w, where w is a general 529

modular on X and dw is the metric from Eq. (8). Note that, given c > 0, the function 530

wλ (x,y) =
1
c wcλ (x,y) is also a modular on X and dw = 1

c dw on X∗
w = X∗

w. Following 531

the lines of the proof of Theorem 4, we get 532

Theorem 5. If w is a modular on X and k > 0, given T : X∗
w → X∗

w and x,y ∈ X∗
w, 533

we have dw(Tx,Ty) ≤ k dw(x,y) iff wkλ+0(T x,Ty) ≤ kλ for all λ > 0 such that 534

wλ (x,y)≤ λ . 535

The following assertion is a corollary of Theorem 5: 536

if wkλ (T x,Ty)≤k wλ (x,y) for all λ >0, then dw(T x,Ty)≤k dw(x,y). 537

Definition 7. Given a (convex) modular w on X , a map T : X∗
w → X∗

w is said to be 538

modular contractive (or a w-contraction) provided there exist numbers 0 < k < 1 539

and λ0 > 0, possibly depending on k, such that 540

wkλ (T x,Ty)≤ wλ (x,y) for all 0 < λ ≤ λ0 and x,y ∈ X∗
w. (24)
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A few remarks are in order. First, by virtue of Eq. (1), for a metric space (X ,d), 541

condition (24) is equivalent to the usual one: d(T x,Ty)≤ kd(x,y). Second, condition 542

(24) is a local one with respect to λ as compared to the assumption on the left 543

in Eq. (23), and the principal inequality in it may be of the form ∞ ≤ ∞. Third, if, 544

in addition, w is strict and if we set ∞/∞ = 1, then Eq. (24) is a consequence of the 545

following: there exists a number 0<h<1 such that 546

limsup
λ→+0

(

sup
x�=y

whλ (T x,Ty)
wλ (x,y)

)

≤ 1, (25)

where the supremum is taken over all x,y ∈ X∗
w such that x �= y. In order to see this, 547

we first note that the left-hand side in Eq. (25) is well defined in the sense that, by 548

virtue of (is) from Definition 1, wλ (x,y) �= 0 for all λ > 0 and x �= y. Choose any k 549

such that h < k < 1. It follows from Eq. (25) that 550

lim
μ→+0

sup
λ∈(0,μ]

(

sup
x�=y

whλ (T x,Ty)
wλ (x,y)

)

≤ 1 <
k
h
, 551

and so, there exists a μ0 = μ0(k)> 0 such that 552

sup
x�=y

whλ (T x,Ty)
wλ (x,y)

<
k
h

for all 0 < λ ≤ μ0, 553

whence 554

whλ (T x,Ty)≤ k
h

wλ (x,y), 0 < λ ≤ μ0, x,y ∈ X∗
w. 555

Taking into account inequalities (7) and (h/k)λ < λ , we get 556

wλ (x,y)≤
(h/k)λ

λ
w(h/k)λ (x,y) =

h
k

w(h/k)λ (x,y), 557

which together with the previous inequality gives 558

whλ (T x,Ty)≤ w(h/k)λ (x,y) for all 0 < λ ≤ μ0 and x,y ∈ X∗
w. 559

Setting λ ′=(h/k)λ and λ0=(h/k)μ0 and noting that 0<λ ′ ≤λ0 and hλ =kλ ′, the 560

last inequality implies wkλ ′(T x,Ty) ≤ wλ ′(x,y) for all 0 < λ ′ ≤ λ0 and x,y ∈ X∗
w, 561

which is exactly Eq. (24). 562

The main result of this chapter is the following fixed-point theorem for modular 563

contractions in modular metric spaces X∗
w. 564

Theorem 6. Let w be a strict convex modular on X such that the modular space X∗
w 565

is w-complete and T : X∗
w → X∗

w be a w-contractive map such that 566

for each λ >0 there exists an x=x(λ )∈X∗
w such that wλ (x,T x)<∞. (26)
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Then T has a fixed point, i.e., Tx∗ = x∗ for some x∗ ∈ X∗
w. If, in addition, the modular 567

w assumes only finite values on X∗
w, then condition (26) is redundant, the fixed point 568

x∗ of T is unique and for each x ∈ X∗
w the sequence of iterates {T nx} is modular 569

convergent to x∗. 570

Proof. Since w is convex, the following inequality follows by induction from 571

condition (iv) of Definition 1: 572

(λ1 +λ2 + · · ·+λN)wλ1+λ2+···+λN
(x1,xN+1)≤

N

∑
i=1

λiwλi
(xi,xi+1), (27)

where N ∈ N, λ1,λ2, . . . ,λN ∈ (0,∞) and x1,x2, . . . ,xN+1 ∈ X . In the proof below 573

we will need a variant of this inequality. Let n,m ∈ N, n > m, λm,λm+1, . . . ,λn−1 ∈ 574

(0,∞) and xm,xm+1, . . . ,xn ∈ X . Setting N = n−m, λ ′
j = λ j+m−1 for j = 1,2, . . . ,N, 575

and x′j = x j+m−1 for j = 1,2, . . . ,N+1 and applying Eq. (27) to the primed lambda’s 576

and x’s, we get 577

(λm+λm+1+· · ·+λn−1)wλm+λm+1+···+λn−1
(xm,xn)≤

n−1

∑
i=m

λiwλi
(xi,xi+1). (28)

By the w-contractivity of T , there exist two numbers 0 < k < 1 and λ0 = λ0(k)> 578

0 such that condition (24) holds. Setting λ1 = (1−k)λ0, the assumption (26) implies 579

the existence of an element x = x(λ1) ∈ X∗
w such that C = wλ1

(x,T x) is finite. We 580

set x1 = T x and xn = Txn−1 for all integer n ≥ 2, and so, {xn} ⊂ X∗
w and xn = T nx, 581

where T n designates the nth iterate of T . We are going to show that the sequence 582

{xn} is w-Cauchy. Since kiλ1 < λ1 < λ0 for all i ∈ N, inequality (24) yields 583

wkiλ1
(xi,xi+1) = wk(ki−1λ1)

(T xi−1,T xi)≤ wki−1λ1
(xi−1,xi), 584

and it follows by induction that 585

wkiλ1
(xi,xi+1)≤ wλ1

(x,x1) =C for all i ∈ N. (29)

Let integers n and m be such that n > m. We set 586

λ = λ (n,m) = kmλ1 + km+1λ1 + · · ·+ kn−1λ1 = km 1− kn−m

1− k
λ1. 587

By virtue of Eq. (28) with λi = kiλ1 and Eq. (29), we find 588

wλ (xm,xn)≤
n−1

∑
i=m

kiλ1

λ
wkiλ1

(xi,xi+1)≤ 1
λ

(
n−1

∑
i=m

kiλ1

)

C =C, n > m. 589
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Taking into account that 590

λ0 =
λ1

1− k
> km 1− kn−m

1− k
λ1 = λ (n,m) = λ for all n > m, 591

and applying Eq. (7), we get 592

wλ0
(xm,xn)≤ λ

λ0
wλ (xm,xn)≤ km 1−kn−m

1− k
·λ1

λ0
C ≤ kmC → 0 as m → ∞. 593

Thus, the sequence {xn} is modular Cauchy, and so, by the w-completeness of X∗
w, 594

there exists an x∗ ∈ X∗
w such that 595

wλ0
(xn,x∗)→ 0 as n → ∞. 596

Since w is strict, by Theorem 1(b), the modular limit x∗ of the sequence {xn} is 597

determined uniquely. 598

Let us show that x∗ is a fixed point of T , i.e., T x∗ = x∗. In fact, by property (iii) 599

of Definition 1 and Eq. (24), we have (note that Txn = xn+1) 600

w(k+1)λ0
(T x∗,x∗)≤wkλ0

(T x∗,T xn)+wλ0
(x∗,xn+1)≤

≤wλ0
(x∗,xn)+wλ0

(x∗,xn+1)→ 0 as n → ∞,

and so, w(k+1)λ0
(Tx∗,x∗) = 0. By the strictness of w, T x∗ = x∗. 601

Finally, assuming w to be finite valued on X∗
w, we show that the fixed point of 602

T is unique. Suppose x∗,y∗ ∈ X∗
w are such that T x∗ = x∗ and Ty∗ = y∗. Then the 603

convexity of w and inequalities kλ0 < λ0 and Eq. (24) imply 604

wλ0
(x∗,y∗)≤ kλ0

λ0
wkλ0

(x∗,y∗) = kwkλ0
(T x∗,Ty∗)≤ kwλ0

(x∗,y∗), 605

and since wλ0
(x∗,y∗) is finite, (1− k)wλ0

(x∗,y∗)≤ 0. Thus, wλ0
(x∗,y∗) = 0, and by

the strictness of w, we get x∗ = y∗. The last assertion is clear. 
�
It is to be noted that assumption (26) in Theorem 6 is (probably) too strong, and 606

what we actually need for the iterative procedure to work in the proof of Theorem 6 607

is only the existence of an x ∈ X∗
w such that w(1−k)λ0

(x,T x) < ∞, where λ0 is the 608

constant from Eq. (24). 609

A standard corollary of Theorem 6 is as follows: if w is finite valued on X∗
w and 610

an nth iterate T n of T : X∗
w → X∗

w satisfies the assumptions of Theorem 6, then T 611

has a unique fixed point. In fact, by Theorem 6 applied to T n, T nx∗ = x∗ for some 612

x∗ ∈ X∗
w. Since T n(T x∗) = T (T nx∗) = Tx∗, the point Tx∗ is also a fixed point of 613

T n, and so, the uniqueness of a fixed point of T n implies Tx∗ = x∗. We infer that 614

x∗ is a unique fixed point of T : if y∗ ∈ X∗
w and Ty∗ = y∗, then T ny∗ = T n−1(Ty∗) = 615
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T n−1y∗ = · · ·= y∗, i.e., y∗ is yet another fixed point of T n, and again the uniqueness 616

of a fixed point of T n yields y∗ = x∗. 617

Another corollary of Theorem 6 concerns general (nonconvex) modulars w on X 618

(cf. Theorem 7). Taking into account Theorem 5 and its corollary, we have 619

Definition 8. Given a modular w on X , a map T : X∗
w → X∗

w is said to be strongly 620

modular contractive (or a strong w-contraction) if there exist numbers 0 < k < 1 621

and λ0 = λ0(k)> 0 such that 622

wkλ (T x,Ty)≤ kwλ (x,y) for all 0 < λ ≤ λ0 and x,y ∈ X∗
w. (30)

Clearly, condition (30) implies condition (24). 623

Theorem 7. Let w be a strict modular on X such that X∗
w is w-complete and T : 624

X∗
w → X∗

w be a strongly w-contractive map such that condition (26) holds. Then 625

T admits a fixed point. If, in addition, w is finite valued on X∗
w, then Eq. (26) is 626

redundant, the fixed point x∗ of T is unique and for each x ∈ X∗
w the sequence of 627

iterates {T nx} is modular convergent to x∗. 628

Proof. We set vλ (x,y) = wλ (x,y)/λ for all λ > 0 and x,y ∈ X . It was observed in
Sect. 2 that v is a convex modular on X . It is also clear that v is strict and the modular
space X∗

v = X∗
w is v-complete. Moreover, condition (30) for w implies condition (24)

for v, and Eq. (26) is satisfied with w replaced by v. By Theorem 6, applied to X and
v, there exists an x∗ ∈ X∗

v = X∗
w such that T x∗ = x∗. The remaining assertions are

obvious. 
�

6 An Application of the Fixed-Point Theorem 629

In this section we present a rather standard application of Theorem 6 to the 630

Carathéodory-type ordinary differential equations. The key interest will be in 631

obtaining the inequality (24). 632

Given a convex ϕ-function ϕ on R
+ satisfying the Orlicz condition at infinity, 633

we denote by Lϕ [a,b] the Orlicz space of real-valued functions on [a,b] (cf. [22, 634

Chap. II]), i.e., a function z : [a,b] → R (or an almost everywhere finite-valued 635

function z on [a,b]) belongs to Lϕ [a,b] provided z is measurable and ρ(z/λ ) < ∞ 636

for some number λ = λ (z) > 0, where ρ(z) =
∫ b

a ϕ(|z(t)|)dt is the classical Orlicz 637

modular. 638

Suppose f : [a,b]×R→R is a (Carathéodory-type) function, which satisfies the 639

following two conditions: 640

(C.1) For each x ∈ R the function f (·,x) = [t �→ f (t,x)] is measurable on [a,b] and 641

there exists a point y0 ∈R such that f (·,y0) ∈ Lϕ [a,b]. 642

(C.2) There exists a constant L > 0 such that | f (t,x)− f (t,y)| ≤ L|x−y| for almost 643

all t ∈ [a,b] and all x,y ∈R. 644
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Given x0 ∈R, we let X∗
w be the modular space Eq. (21) generated by the modular 645

w from Eq. (14) under the assumptions from Example 4.4.AQ4 646

Consider the following integral operator: 647

(T x)(t) = x0 +

∫ t

a
f (s,x(s))ds, x ∈ X∗

w, t ∈ [a,b]. (31)

Theorem 8. Under the assumptions (C.1) and (C.2), the operator T maps X∗
w into 648

itself, and the following inequality holds in [0,∞]: 649

wL(b−a)λ (T x,Ty)≤ wλ (x,y) for all λ > 0 and x,y ∈ X∗
w. (32)

Proof. We will apply the Jensen integral inequality with the convex ϕ-function ϕ 650

(e.g. [24, X.5.6]) several times: 651

ϕ

(
1

b− a

∫ b

a
|x(t)|dt

)
≤ 1

b− a

∫ b

a
ϕ
(|x(t)|)dt, x ∈ L1[a,b], (33)

where the intergral in the right-hand side is well defined in the sense that it takes 652

values in [0,∞]. 653

1. First, we show that T is well defined on X∗
w. Let x ∈ X∗

w, i.e., x ∈ GVϕ [a,b] and 654

x(a) = x0. Since (cf. Example 4.4) x ∈ AC[a,b], by virtue of (C.1) and (C.2), the 655

composed function t �→ f (t,x(t)) is measurable on [a,b]. Let us prove that this 656

function belongs to L1[a,b]. By Lebesgue’s theorem, x(t) = x0 +
∫ t

a x′(s)ds for 657

all t ∈ [a,b], and so, (C.2) yields 658

| f (t,x(t))|≤| f (t,x(t))− f (t,y0)|+ | f (t,y0)|

≤L|x(t)− y0|+ | f (t,y0)|

≤L
∫ b

a
|x′(s)|ds+L|x0 − y0|+ | f (t,y0)| (34)

for almost all t ∈ [a,b]. Since x∈X∗
w, and so, x∈GVϕ [a,b], there exists a constant 659

λ1 = λ1(x)> 0 such that (cf. Eq. (20)) 660

C1 ≡ wλ1
(x,x0) =

∫ b

a
ϕ

(
|x′(s)|

λ1

)

ds < ∞, 661

and since, by (C.1), f (·,y0)∈Lϕ [a,b], there exists a constant λ2=λ2( f (·,y0))>0 662

such that 663

C2 ≡ ρ
(

f (·,y0)/λ2
)
=

∫ b

a
ϕ

(
| f (t,y0)|

λ2

)

dt < ∞. 664
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Setting λ0 = Lλ1(b− a)+ 1+λ2 and noting that 665

Lλ1(b− a)
λ0

+
1
λ0

+
λ2

λ0
= 1, 666

by the convexity of ϕ , we find (see Eq. (34)) 667

ϕ

(
1
λ0

[

L
∫ b

a
|x′(s)|ds+L|x0 − y0|+ | f (t,y0)|

])

≤ Lλ1(b−a)
λ0

ϕ

(
1

b−a

∫ b

a

|x′(s)|
λ1

ds

)

+
1
λ0

ϕ
(
L|x0−y0|

)
+

λ2

λ0
ϕ

(
| f (·,y0)|

λ2

)

,

and so, Eq. (34) and Jensen’s integral inequality yield 668

∫ b

a
ϕ

(
| f (t,x(t))|

λ0

)

dt ≤ Lλ1(b−a)
λ0

C1 +
b−a
λ0

ϕ
(
L|x0 − y0|

)
+

λ2

λ0
C2 ≡C0 < ∞.

(35)
Now, it follows from Eq. (33) that 669

ϕ

(
1

λ0(b− a)

∫ b

a
| f (t,x(t))|dt

)

≤ 1
b− a

∫ b

a
ϕ

(
| f (t,x(t))|

λ0

)

dt ≤ C0

b− a
670

implying 671
∫ b

a
| f (t,x(t))|dt ≤ λ0(b− a)ϕ−1

(
C0

b− a

)

< ∞. 672

Thus, [t �→ f (t,x(t))] ∈ L1[a,b]. As a consequence, the operator T is well defined 673

on X∗
w, and, by Eq. (31), Tx ∈ AC[a,b] for all x ∈ X∗

w, which implies that the 674

almost everywhere derivative (Tx)′ belongs to L1[a,b] and satisfies 675

(T x)′(t) = f (t,x(t)) for almost all t ∈ [a,b]. (36)

2. It is clear from Eq. (31) that, given x ∈ X∗
w, (T x)(a) = x0, and so, T x ∈ X = {y : 676

[a,b]→R | y(a) = x0}. Now we show that T x∈X∗
w. In fact, by virtue of Eqs. (20), 677

(36) and (35), we have 678

wλ0
(T x,x0) =

∫ b

a
ϕ

(
|(Tx)′(t)|

λ0

)

dt =
∫ b

a
ϕ

(
| f (t,x(t))|

λ0

)

dt ≤C0, (37)

and so, T maps X∗
w into itself. 679

3. In order to obtain inequality (32), let λ > 0 and x,y ∈ X∗
w. Taking into account 680

Eqs. (19), (20) and (36), we find 681
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wL(b−a)λ (T x,Ty)=wL(b−a)λ (T x−Ty,x0) =

∫ b

a
ϕ

(
|(T x−Ty)′(t)|

L(b− a)λ

)

dt

=
∫ b

a
ϕ

(
| f (t,x(t))− f (t,y(t))|

L(b− a)λ

)

dt. (38)

Applying (C.2) and Lebesgue’s theorem, we get, for almost all t ∈ [a,b] (note 682

that x(a) = y(a) = x0), 683

| f (t,x(t))− f (t,y(t))| ≤ L|x(t)− y(t)| ≤ L
∫ b

a
|(x− y)′(s)|ds, 684

and so, by Eq. (33), the monotonicity of ϕ , Eqs. (20) and (19), 685

ϕ

(
| f (t,x(t))− f (t,y(t))|

L(b− a)λ

)

≤ϕ

(
1

b− a

∫ b

a

|(x− y)′(s)|
λ

ds

)

≤ 1
b− a

∫ b

a
ϕ

(
|(x− y)′(s)|

λ

)

ds

=
1

b− a
wλ (x,y).

Now, inequality (32) follows from Eq. (38). 686


�
As a corollary of Theorems 6 and 8, we have 687

Theorem 9. Under the conditions (C.1) and (C.2), given x0 ∈ R, the initial value 688

problem 689

x′(t) = f (t,x(t)) for almost all t ∈ [a,b1] and x(a) = x0 (39)

admits a solution x ∈ GVϕ [a,b1] with a < b1 ∈R such that L(b1 − a)< 1. 690

Proof. We know from Example 4.4 that w is a strict convex modular on the set 691

X = {x : [a,b1]→R | x(a) = x0} and that the modular space X∗
w = GVϕ [a,b1]∩X is 692

w-complete. By Theorem 8, the operator T from Eq. (31) maps X∗
w into itself and is 693

w-contractive. Since the inequality wkλ (T x,Ty)≤wλ (x,y) with 0< k = L(b1−a)< 694

1 holds for all λ > 0, in the iterative procedure in the proof of Theorem 6, it suffices 695

to choose any x ∈ X∗
w such that wλ (x,T x) < ∞ for some λ > 0. Since (x0)

′ = 0, by 696

virtue of Eqs. (37) and (35), we find 697

wλ0
(T x0,x0)≤C0 =

b1 − a
λ0

ϕ(L|x0 − y0|)+ λ2

λ0
C2 < ∞ 698
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(the constants λ2 and C2 being evaluated on the interval [a,b1]) with λ = λ0 =
L(b1 − a)+ 1+ λ2, and so, we may set x = x0. Now, by Theorem 6, the integral
operator T admits a fixed point: the equality T x = x on [a,b1] for some x ∈ X∗

w is, by
virtue of Eqs. (31) and (36), equivalent to Eq. (39). 
�

7 Concluding Remarks 699

7.1. It is not our intention in this chapter to study the properties of solutions toAQ5 700

Eq. (39) in detail: after Theorem 9 on local solutions of Eq. (39) has been 701

established, the questions of uniqueness, extensions, etc. of solutions can be 702

studied following the same pattern as in, e.g., [13]. Theorems 8 and 9 are valid 703

(with the same proofs) for mappings x : [a,b] → M and f : [a,b]×M → M 704

satisfying (C.1) and (C.2), where (M, | · |) is a reflexive Banach space; the 705

details concerning the equality (20) in this case can be found in [2–5]. 706

7.2. In the theory of the Carathéodory differential equations (39) (cf. [13]) the usual 707

assumption on the right-hand side is of the form | f (t,x)| ≤ g(t) for almost all 708

t ∈ [a,b] and all x ∈ R, where g ∈ L1[a,b], and the resulting solution belongs 709

to AC[a,b1] for some a < b1 < b. However, it is known from [19, II.8] that 710

L1[a,b] =
⋃

ϕ∈N Lϕ [a,b], where N is the set of all ϕ-functions satisfying 711

the Orlicz condition at infinity. Also, it follows from [2, Corollary 11] that 712

AC[a,b] =
⋃

ϕ∈N GVϕ [a,b]. Thus, Theorem 9 reflects the regularity property 713

of solutions of Eq. (39). Note that, in contrast with functions from AC[a,b], 714

functions x from GVϕ [a,b] have the “qualified” modulus of continuity [5, 715

Lemma 3.9(a)]: |x(t)− x(s)| ≤ Cx ·ωϕ (|t − s|) for all t,s ∈ [a,b], where Cx = 716

d∗
w(x,0) and ωϕ : R+ → R

+ is a subadditive function given by ωϕ (u) = 717

uϕ−1(1/u) for u > 0 and ωϕ(+0) = ωϕ (0) = 0. 718

7.3. Theorem 8 does not reflect all the flavour of Theorem 6, namely, the locality of 719

condition (24) and the modular convergence of the successive approximations 720

of the fixed points, and so, an appropriate example is yet to be found; however, 721

one may try to adjust Example 2.15 from [16] (note that Proposition 2.14 from 722

[16] is similar to our assertion (23) with k = 1). 723
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