Metadata of the chapter that will be visualized online

Series Title	Springer Proceedings in Mathematics \& Statistics
Chapter Title	Modular Contractions and Their Application
Chapter SubTitle	
Copyright Year	2013
Copyright Holder	Springer Science + Business Media New York
Corresponding Author	Family Name Chistyakov
	Particle
	Given Name Vyacheslav V.
	Suffix
	Division Department of Applied Mathematics and Computer Science and Laboratory of Algorithms and Technologies for Networks Analysis
	Organization National Research University Higher School of Economics
	Address Bol'shaya Pechërskaya Street 25/12, 603155, Nizhny Novgorod, Russian Federation, Russia
	Email vchistyakov@hse.ru; czeslaw@mail.ru
Abstract	The notion of a metric modular on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces and Orlicz spaces, were recently introduced and studied by the author [Chistyakov: Dokl. Math. 73(1):32-35, 2006 and Nonlinear Anal. 72(1):1-30, 2010]. In this chapter we present yet one more application of the metric modulars theory to the existence of fixed points of modular contractive maps in modular metric spaces. These are related to contracting generalized average velocities rather than metric distances, and the successive approximations of fixed points converge to the fixed points in the modular sense, which is weaker than the metric convergence. We prove the existence of solutions to a Carathéodory-type differential equation with the right-hand side from the Orlicz space. Metric modular, Modular convergence, Modular contraction, Fixed point, Mapping of finite ϕ-variation, Carathéodory-type differential equation

Author's Proof

Modular Contractions and Their Application

Vyacheslav V. Chistyakov

2

Keywords Metric modular • Modular convergence - Modular contraction • 3 Fixed point • Mapping of finite φ-variation - Carathéodory-type differential 4 equation

1 Introduction

The metric fixed-point theory $[14,18]$ and its variations [15] are far-reaching 7 developments of Banach's contraction principle, where metric conditions on the un- 8 derlying space and maps under consideration play a fundamental role. This chapter 9 addresses fixed points of nonlinear maps in modular spaces introduced recently 10 by the author [3-10] as generalizations of Orlicz spaces and classical modular 11 spaces [19, 20, 22-27], where modular structures (involving nonlinearities with 12 more rapid growth than power-like functions), play the crucial role. Under different ${ }_{13}$ contractive assumptions and the supplementary Δ_{2}-condition on modulars fixed- 14 point theorems in classical modular linear spaces were established in [1, 16, 17]. 15

We begin with a certain motivation of the definition of a (metric) modular, 16 introduced axiomatically in [7,9]. A simple and natural way to do it is to turn to 17 physical interpretations. Informally speaking, whereas a metric on a set represents 18 nonnegative finite distances between any two points of the set, a modular on a set 19 attributes a nonnegative (possibly, infinite valued) "field of (generalized) velocities": 20 to each "time" $\lambda>0$ (the absolute value of) an average velocity $w_{\lambda}(x, y)$ is associated 21 in such a way that in order to cover the "distance" between points $x, y \in X$ it takes 22 time λ to move from x to y with velocity $w_{\lambda}(x, y)$. Let us comment on this in more

[^0]
Author's Proof

detail by exhibiting an appropriate example. If $d(x, y) \geq 0$ is the distance from x to $y{ }^{23}$ and a number $\lambda>0$ is interpreted as time, then the value

$$
\begin{equation*}
w_{\lambda}(x, y)=\frac{d(x, y)}{\lambda} \tag{1}
\end{equation*}
$$

is the average velocity, with which one should move from x to y during time λ, in 25 order to cover the distance $d(x, y)$. The following properties of the quantity from 26 Eq. (1) are quite natural.

1. Two points x and y from X coincide (and $d(x, y)=0$) if and only if any time 28 $\lambda>0$ will do to move from x to y with velocity $w_{\lambda}(x, y)=0$ (i.e., no movement 29 is needed at any time). Formally, given $x, y \in X$, we have

$$
\begin{equation*}
x=y \text { iff } w_{\lambda}(x, y)=0 \text { for all } \lambda>0 \text { (nondegeneracy), } \tag{2}
\end{equation*}
$$

where "iff" means as usual "if and only if".
2. Assuming the distance function to be symmetric, $d(x, y)=d(y, x)$, we find that 32 for any time $\lambda>0$, the average velocity during the movement from x to y is the 33 same as the average velocity in the opposite direction, i.e., for any $x, y \in X$ we 34 have

$$
\begin{equation*}
w_{\lambda}(x, y)=w_{\lambda}(y, x) \text { for all } \lambda>0 \text { (symmetry) } \tag{3}
\end{equation*}
$$

3. The third property of Eq. (1), which is, in a sense, a counterpart of the triangle 36 inequality (for velocities!), is the most important. Suppose the movement from 37 x to y happens to be made in two different ways, but the duration of time is the 38 same in each case: (a) passing through a third point $z \in X$ or (b) straightforward 39 from x to y. If λ is the time needed to get from x to z and μ is the time needed 40 to get from z to y, then the corresponding average velocities are $w_{\lambda}(x, z)$ (during 41 the movement from x to z) and $w_{\mu}(z, y)$ (during the movement from z to y). The 42 total time needed for the movement in the case (a) is equal to $\lambda+\mu$. Thus, in 43 order to move from x to y as in the case (b), one has to have the average velocity 44 equal to $w_{\lambda+\mu}(x, y)$. Since (as a rule) the straightforward distance $d(x, y)$ does 45 not exceed the sum of the distances $d(x, z)+d(z, y)$, it becomes clear from the 46 physical intuition that the velocity $w_{\lambda+\mu}(x, y)$ does not exceed at least one of the 47 velocities $w_{\lambda}(x, z)$ or $w_{\mu}(z, y)$. Formally, this is expressed as

$$
\begin{equation*}
w_{\lambda+\mu}(x, y) \leq \max \left\{w_{\lambda}(x, z), w_{\mu}(z, y)\right\} \leq w_{\lambda}(x, z)+w_{\mu}(z, y) \tag{4}
\end{equation*}
$$

for all points $x, y, z \in X$ and all times $\lambda, \mu>0$ ("triangle" inequality). In fact, these 49 inequalities can be verified rigorously: if, on the contrary, we assume that $w_{\lambda}(x, z)<50$ $w_{\lambda+\mu}(x, y)$ and $w_{\mu}(z, y)<w_{\lambda+\mu}(x, y)$, then multiplying the first inequality by λ, the 51 second inequality-by μ, summing the results and taking into account Eq. (1), we 52 find $d(x, z)=\lambda w_{\lambda}(x, z)<\lambda w_{\lambda+\mu}(x, y)$ and $d(z, y)=\mu w_{\mu}(z, y)<\mu w_{\lambda+\mu}(x, y)$, and 53 it follows that $d(x, z)+d(z, y)<(\lambda+\mu) w_{\lambda+\mu}(x, y)=d(x, y)$, which contradicts the 54 triangle inequality for d.

Author's Proof

Modular Contractions and Their Application

Inequality (4) can be obtained in a little bit more general situation. Let $f: 56$ $(0, \infty) \rightarrow(0, \infty)$ be a function from the set of positive reals into itself such that the 57 function $\lambda \mapsto \lambda / f(\lambda)$ is nonincreasing on $(0, \infty)$. Setting $w_{\lambda}(x, y)=d(x, y) / f(\lambda) 58$ (note that $f(\lambda)=\lambda$ in Eq. (1)), we have 59

$$
\begin{align*}
w_{\lambda+\mu}(x, y) & =\frac{d(x, y)}{f(\lambda+\mu)} \leq \frac{d(x, z)+d(z, y)}{f(\lambda+\mu)} \leq \frac{\lambda}{\lambda+\mu} \cdot \frac{d(x, z)}{f(\lambda)}+\frac{\mu}{\lambda+\mu} \cdot \frac{d(z, y)}{f(\mu)} \\
& \leq \frac{\lambda}{\lambda+\mu} w_{\lambda}(x, z)+\frac{\mu}{\lambda+\mu} w_{\mu}(z, y) \leq w_{\lambda}(x, z)+w_{\mu}(z, y) . \tag{5}
\end{align*}
$$

A nonclassical example of "generalized velocities" satisfying Eqs. (2)-(4) is given 60 by $w_{\lambda}(x, y)=\infty$ if $\lambda \leq d(x, y)$ and $w_{\lambda}(x, y)=0$ if $\lambda>d(x, y)$.

61
A (metric) modular on a set X is any one-parameter family $w=\left\{w_{\lambda}\right\}_{\lambda>0}$ of 62 functions $w_{\lambda}: X \times X \rightarrow[0, \infty]$ satisfying Eqs. (2)-(4). In particular, the family given 63 by Eq. (1) is the canonical (= natural) modular on a metric space (X, d), which 64 can be interpreted as a field of average velocities. For a different interpretation 65 of modulars related to the joint generalized variation of univariate maps and their 66 relationships with classical modulars on linear spaces we refer to [9] (cf. also 67 Sect. 4).

The difference between a metric ($=$ distance function) and a modular on a set 69 is now clearly seen: a modular depends on a positive parameter and may assume 70 infinite values; the latter property means that it is impossible (or prohibited) to move 71 from x to y in time λ, unless one moves with infinite velocity $w_{\lambda}(x, y)=\infty$. In 72 addition (cf. Eq. (1)), the "velocity" $w_{\lambda}(x, y)$ is nonincreasing as a function of "time" ${ }^{73}$ $\lambda>0$. The knowledge of "average velocities" $w_{\lambda}(x, y)$ for all $\lambda>0$ and $x, y \in X \quad 74$ provides more information than simply the knowledge of distances $d(x, y)$ between 75 x and y : the distance $d(x, y)$ can be recovered as a "limit case" via the formula (again 76 cf. Eq. (1)):

$$
d(x, y)=\inf \left\{\lambda>0: w_{\lambda}(x, y) \leq 1\right\}
$$

Now we describe briefly the main result of this chapter. Given a modular w on a 79 set X, we introduce the modular space $X_{w}^{*}=X_{w}^{*}\left(x_{0}\right)$ around a point $x_{0} \in X$ as the set 80 of those $x \in X$, for which $w_{\lambda}\left(x, x_{0}\right)$ is finite for some $\lambda=\lambda(x)>0$. A map $T: X_{w}^{*} \rightarrow 81$ X_{w}^{*} is said to be modular contractive if there exists a constant $0<k<1$ such that for 82 all small enough $\lambda>0$ and all $x, y \in X_{w}^{*}$ we have $w_{k \lambda}(T x, T y) \leq w_{\lambda}(x, y)$. Our main 83 result (Theorem 6) asserts that if w is convex and strict, X_{w}^{*} is modular complete (the 84 emphasized notions will be introduced in the main text below) and $T: X_{w}^{*} \rightarrow X_{w}^{*} 85$ is modular contractive, then T admits a (unique) fixed point: $T x_{*}=x_{*}$ for some 86 $x_{*} \in X_{w}^{*}$. The successive approximations of x_{*} constructed in the proof of this result 87 converge to x_{*} in the modular sense, which is weaker than the metric convergence. 88 In particular, Banach's contraction principle follows if we take into account Eq. (1). 89

This chapter is organized as follows. In Sect. 2 we study modulars and convex 90 modulars and introduce two modular spaces. In Sect. 3 we introduce the notions of 91 modular convergence, modular limit and modular completeness and show that they 92

Author's Proof

are "weaker" than the corresponding metric notions. These notions are illustrated 93 in Sect. 4 by examples. Section 5 is devoted to a fixed-point theorem for modular 94 contractions in modular complete modular metric spaces. This theorem is then 95 applied in Sect. 6 to the existence of solutions of a Carathéodory-type ordinary 96 differential equation with the right-hand side from the Orlicz space L^{φ}. Finally, 97 in Sect. 7 some concluding remarks are presented.

2 Modulars and Modular Spaces

In what follows X is a nonempty set, $\lambda>0$ is understood in the sense that $\lambda \in(0, \infty) 100$ and, in view of the disparity of the arguments, functions $w:(0, \infty) \times X \times X \rightarrow[0, \infty] \quad 101$ will be also written as $w_{\lambda}(x, y)=w(\lambda, x, y)$ for all $\lambda>0$ and $x, y \in X$, so that $w=102$ $\left\{w_{\lambda}\right\}_{\lambda>0}$ with $w_{\lambda}: X \times X \rightarrow[0, \infty]$.

Definition $1([7,9])$. A function $w:(0, \infty) \times X \times X \rightarrow[0, \infty]$ is said to be a (metric) 104 modular on X if it satisfies the following three conditions:
(i) Given $x, y \in X, x=y$ iff $w_{\lambda}(x, y)=0$ for all $\lambda>0 \quad 106$
(ii) $w_{\lambda}(x, y)=w_{\lambda}(y, x)$ for all $\lambda>0$ and $x, y \in X \quad 107$
(iii) $w_{\lambda+\mu}(x, y) \leq w_{\lambda}(x, z)+w_{\mu}(y, z)$ for all $\lambda, \mu>0$ and $x, y, z \in X \quad 108$

If, instead of (i), the function w satisfies only 109
(i') $w_{\lambda}(x, x)=0$ for all $\lambda>0$ and $x \in X \quad 110$
then w is said to be a pseudomodular on X, and if w satisfies (i^{\prime}) and 111
(is) given $x, y \in X$, if there exists a number $\lambda>0$, possibly depending on x and $y, 112$
such that $w_{\lambda}(x, y)=0$, then $x=y \quad 113$
the function w is called a strict modular on X. 114
A modular (pseudomodular, strict modular) w on X is said to be convex if, instead 115 if (iii), for all $\lambda, \mu>0$ and $x, y, z \in X$, it satisfies the inequality: 116
(iv) $w_{\lambda+\mu}(x, y) \leq \frac{\lambda}{\lambda+\mu} w_{\lambda}(x, z)+\frac{\mu}{\lambda+\mu} w_{\mu}(y, z)$

A motivation of the notion of convexity for modulars, which may look unexpected at first glance, was given in [9, Theorem 3.11], cf. also inequality (5); a further 119 generalization of this notion was presented in [8, Sect. 5].

Given a metric space (X, d) with metric d, two canonical strict modulars are 121 associated with it: $w_{\lambda}(x, y)=d(x, y)$ (denoted simply by d), which is independent 122 of the first argument λ and is a (nonconvex) modular on X in the sense of (i)-(iii), 123 and the convex modular Eq.(1), which satisfies (i), (ii) and (iv). Both modulars $d{ }_{124}$ and Eq. (1) assume only finite values on X.

Clearly, if w is a strict modular, then w is a modular, which in turn implies w is a

Author's Proof

Modular Contractions and Their Application

The essential property of a pseudomodular w on X (cf. [9, Sect. 2.3]) is that, for 128 any given $x, y \in X$, the function $0<\lambda \mapsto w_{\lambda}(x, y) \in[0, \infty]$ is nonincreasing on $(0, \infty), 129$ and so, the limit from the right $w_{\lambda+0}(x, y)$ and the limit from the left $w_{\lambda-0}(x, y)$ exist ${ }_{130}$ in $[0, \infty]$ and satisfy the inequalities:

$$
\begin{equation*}
w_{\lambda+0}(x, y) \leq w_{\lambda}(x, y) \leq w_{\lambda-0}(x, y) \tag{6}
\end{equation*}
$$

A convex pseudomodular w on X has the following additional property: given 132 $x, y \in X$, we have (cf. [9, Sect. 3.5]):

$$
\begin{equation*}
\text { if } 0<\mu \leq \lambda, \text { then } w_{\lambda}(x, y) \leq \frac{\mu}{\lambda} w_{\mu}(x, y) \leq w_{\mu}(x, y) \tag{7}
\end{equation*}
$$

i.e., functions $\lambda \mapsto w_{\lambda}(x, y)$ and $\lambda \mapsto \lambda w_{\lambda}(x, y)$ are nonincreasing on $(0, \infty)$. 134

Throughout this chapter we fix an element $x_{0} \in X$ arbitrarily. 135
Definition $2([7,9])$. Given a pseudomodular w on X, the two sets 136

$$
X_{w} \equiv X_{w}\left(x_{0}\right)=\left\{x \in X: w_{\lambda}\left(x, x_{0}\right) \rightarrow 0 \text { as } \lambda \rightarrow \infty\right\}
$$

and

$$
X_{w}^{*} \equiv X_{w}^{*}\left(x_{0}\right)=\left\{x \in X: \exists \lambda=\lambda(x)>0 \text { such that } w_{\lambda}\left(x, x_{0}\right)<\infty\right\}
$$

are said to be modular spaces (around x_{0}).
It is clear that $X_{w} \subset X_{w}^{*}$, and it is known (cf. [9, Sects.3.1 and 3.2]) that this 141 inclusion is proper in general. It follows from [9, Theorem 2.6] that if w is a modular 142 on X, then the modular space X_{w} can be equipped with a (nontrivial) metric $d_{w},{ }_{143}$ generated by w and given by

$$
\begin{equation*}
d_{w}(x, y)=\inf \left\{\lambda>0: w_{\lambda}(x, y) \leq \lambda\right\}, \quad x, y \in X_{w} . \tag{8}
\end{equation*}
$$

It will be shown later that d_{w} is a well-defined metric on a larger set X_{w}^{*}.
If w is a convex modular on X, then according to [9, Sect. 3.5 and Theorem 3.6] 146 the two modular spaces coincide, $X_{w}=X_{w}^{*}$, and this common set can be endowed 147 with a metric d_{w}^{*} given by

$$
\begin{equation*}
d_{w}^{*}(x, y)=\inf \left\{\lambda>0: w_{\lambda}(x, y) \leq 1\right\}, \quad x, y \in X_{w}^{*} \tag{9}
\end{equation*}
$$

moreover, d_{w}^{*} is specifically equivalent to d_{w} (see [9, Theorem 3.9]). By the 149 convexity of w, the function $\widehat{w}_{\lambda}(x, y)=\lambda w_{\lambda}(x, y)$ is a modular on X in the sense 150 of (i)-(iii) and (cf. [9, Formula (3.3)])

$$
\begin{equation*}
X_{\widehat{w}}^{*}=X_{w}^{*}=X_{w} \supset X_{\widehat{w}}, \tag{10}
\end{equation*}
$$

where the last inclusion may be proper; moreover, $d_{\widehat{w}}=d_{w}^{*}$ on $X_{\widehat{w}}$.

Author's Proof

Even if w is a nonconvex modular on X, the quantity Eq. (9) is also defined for all $x, y \in X_{w}^{*}$, but it has only few properties (cf. [9, Theorem 3.6]): $d_{w}^{*}(x, x)=0$ and 154 $d_{w}^{*}(x, y)=d_{w}^{*}(y, x)$. In this case we have (cf. [9, Theorem 3.9 and Example 3.10]): if 155 $d_{w}(x, y)<1$, then $d_{w}^{*}(x, y) \leq d_{w}(x, y)$, and if $d_{w}^{*}(x, y) \geq 1$, then $d_{w}(x, y) \leq d_{w}^{*}(x, y) . \quad 156$

Let us illustrate the above in the case of a metric space (X, d) with the two 157 canonical modulars d and w from Eq. (1) on it. We have: $X_{d}=\left\{x_{0}\right\} \subset X_{d}^{*}=X_{w}=158$ $X_{w}^{*}=X$, and given $x, y \in X, d_{d}(x, y)=d(x, y), d_{d}^{*}(x, y)=0, d_{w}(x, y)=\sqrt{d(x, y)},{ }_{159}$ $d_{w}^{*}(x, y)=d(x, y)$ and $\widehat{d}(x, y)=\lambda w_{\lambda}(x, y)=d(x, y)$. Thus, the convex modular $w 160$ from Eq. (1) plays a more adequate role in restoring the metric space (X, d) from $w 161$ (cf. $d_{w}^{*}=d$ on $X_{w}=X_{w}^{*}=X$, whereas $X_{d} \subset X_{d}^{*}=X, d_{d}=d$ and $d_{d}^{*}=0$), and so, 162 in what follows, any metric space (X, d) will be considered equipped only with the 163 modular Eq. (1). This convention is also justified as follows. 164

Now we exhibit the relationship between convex and nonconvex modulars and 165 show that d_{w} is a well-defined metric on X_{w}^{*} (and not only on X_{w}). If w is a (not 166 necessarily convex) modular on X, then the function (cf. Eq. (1) where $d(x, y)$ plays 167 the role of a modular)

$$
v_{\lambda}(x, y)=\frac{w_{\lambda}(x, y)}{\lambda}, \quad \lambda>0, \quad x, y \in X,
$$

is always a convex modular on X. In fact, conditions (i) and (ii) are clear for v, and, 170 as for (iv), we have, by virtue of (iii) for w,

$$
\begin{aligned}
v_{\lambda+\mu}(x, y) & =\frac{w_{\lambda+\mu}(x, y)}{\lambda+\mu} \leq \frac{w_{\lambda}(x, z)+w_{\mu}(y, z)}{\lambda+\mu} \\
& =\frac{\lambda}{\lambda+\mu} \cdot \frac{w_{\lambda}(x, z)}{\lambda}+\frac{\mu}{\lambda+\mu} \cdot \frac{w_{\mu}(y, z)}{\mu}=\frac{\lambda}{\lambda+\mu} v_{\lambda}(x, z)+\frac{\mu}{\lambda+\mu} v_{\mu}(y, z) .
\end{aligned}
$$

Moreover, because $w=\widehat{v}$, we find from Eq. (10) that $X_{w} \subset X_{w}^{*}=X_{v}=X_{v}^{*}$. Since 172 $d_{v}^{*}(x, y)=\inf \left\{\lambda>0: w_{\lambda}(x, y) / \lambda \leq 1\right\}=d_{w}(x, y)$ for all $x, y \in X_{w}^{*}$, i.e., $d_{v}^{*}=d_{w}$ on ${ }^{173}$ X_{w}^{*} and d_{v}^{*} is a metric on $X_{v}^{*}=X_{w}^{*}$, then we conclude that d_{w} is a well-defined metric 174 on X_{w}^{*} (the same conclusion follows immediately from [8, Theorem 1]) with $X^{\prime}=175$ X_{w}^{*}). This property distinguishes our theory of modulars from the classical theory: 176 if ρ is a classical modular on a linear space X in the sense of Musielak and Orlicz 177 [22] and $w_{\lambda}(x, y)=\rho((x-y) / \lambda), \lambda>0, x, y \in X$, then the expression $v_{\lambda}(x, y)=178$ $(1 / \lambda) w_{\lambda}(x, y)=(1 / \lambda) \rho((x-y) / \lambda)$ is not allowed as a classical modular on X. 179 Since v is convex and $d_{v}^{*}=d_{w}$ on X_{w}^{*}, given $x, y \in X_{w}^{*}$, by virtue of [9, Theorem 3.9], 180 we have

$$
\begin{aligned}
& d_{w}(x, y)<1 \text { iff } d_{v}(x, y)<1, \text { and } d_{w}(x, y) \leq d_{v}(x, y) \leq \sqrt{d_{w}(x, y)} \\
& d_{w}(x, y) \geq 1 \text { iff } d_{v}(x, y) \geq 1, \text { and } \sqrt{d_{w}(x, y)} \leq d_{v}(x, y) \leq d_{w}(x, y)
\end{aligned}
$$

Author's Proof

Modular Contractions and Their Application

More metrics can be defined on X_{w}^{*} for a given modular w on X in the following 185 general way (cf. [8, Theorem 1]): if $\mathbb{R}^{+}=[0, \infty)$ and $\kappa: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is superadditive 186 (i.e. $\kappa(\lambda)+\kappa(\mu) \leq \kappa(\lambda+\mu)$ for all $\lambda, \mu \geq 0$) and such that $\kappa(u)>0$ for $u>0$ and 187 $\kappa(+0)=\lim _{u \rightarrow+0} \kappa(u)=0$, then the function $d_{\kappa, w}(x, y)=\inf \left\{\lambda>0: w_{\lambda}(x, y) \leq 188\right.$ $\kappa(\lambda)\}$ is a well-defined metric on X_{w}^{*}.

Given a pseudomodular (modular, strict modular, convex or not) w on $X, \lambda>0 \quad 190$ and $x, y \in X$, we define the left and right regularizations of w by

$$
\begin{equation*}
w_{\lambda}^{-}(x, y)=w_{\lambda-0}(x, y) \quad \text { and } \quad w_{\lambda}^{+}(x, y)=w_{\lambda+0}(x, y) . \tag{192}
\end{equation*}
$$

Since, by Eq. (6), $w_{\lambda}^{+}(x, y) \leq w_{\lambda}(x, y) \leq w_{\lambda}^{-}(x, y)$, and

$$
\begin{equation*}
w_{\lambda_{2}}^{-}(x, y) \leq w_{\lambda}(x, y) \leq w_{\lambda_{1}}^{+}(x, y) \quad \text { for all } \quad 0<\lambda_{1}<\lambda<\lambda_{2}, \tag{11}
\end{equation*}
$$

it is a routine matter to verify that w^{-}and w^{+}are pseudomodulars (modulars, strict 194 modulars, convex or not, respectively) on $X, X_{w^{-}}=X_{w}=X_{w^{+}}, X_{w^{-}}^{*}=X_{w}^{*}=X_{w^{+}}^{*}, 195$ $d_{w^{-}}=d_{w}=d_{w^{+}}$on X_{w} and $d_{w^{-}}^{*}=d_{w}^{*}=d_{w^{+}}^{*}$ on X_{w}^{*}. For instance, let us check 196 the last two equalities for metrics. Given $x, y \in X_{w}^{*}$, by virtue of Eq. (6), we find 197 $d_{w^{-}}^{*}(x, y) \geq d_{w}^{*}(x, y) \geq d_{w^{+}}^{*}(x, y)$. In order to see that $d_{w^{-}}^{*}(x, y) \leq d_{w}^{*}(x, y)$, we let $\lambda>198$ $d_{w}^{*}(x, y)$ be arbitrary and choose μ such that $d_{w}^{*}(x, y)<\mu<\lambda$, which, by Eq. (11), 199 gives $w_{\lambda}^{-}(x, y) \leq w_{\mu}(x, y) \leq 1$, and so, $d_{w}^{*}-(x, y) \leq \lambda$, and then let $\lambda \rightarrow d_{w}^{*}(x, y)$. In 200 order to prove that $d_{w}^{*}(x, y) \leq d_{w^{+}}^{*}(x, y)$, we let $\lambda>d_{w^{+}}^{*}(x, y)$ be arbitrary and choose 201 μ such that $d_{w^{+}}^{*}(x, y)<\mu<\lambda$, which, by Eq. (11), implies $w_{\lambda}(x, y) \leq w_{\mu}^{+}(x, y) \leq 1,202$ and so, $d_{w}^{*}(x, y) \leq \lambda$, and then let $\lambda \rightarrow d_{w^{+}}^{*}(x, y)$.

In this way we have seen that the regularizations provide no new modular spaces 204 as compared to X_{w} and X_{w}^{*} and no new metrics as compared to d_{w} and d_{w}^{*}. The right 205 regularization will be needed in Sect. 5 for the characterization of metric Lipschitz 206 maps in terms of underlying modulars.

3 Sequences in Modular Spaces and Modular Convergence

The notions of modular convergence, modular limit, modular completeness, etc., 209 which we study in this section, are known in the classical theory of modulars on 210 linear spaces (e.g., [20, 22, 25, 27]). Since the theory of (metric) modulars from [7, 211 $8,10]$ is significantly more general than the classical theory, the notions mentioned 212 above do not carry over to metric modulars in a straightforward way and ought to 213 be reintroduced and justified.

Definition 3. Given a pseudomodular w on X, a sequence of elements $\left\{x_{n}\right\} \equiv 215$ $\left\{x_{n}\right\}_{n=1}^{\infty}$ from X_{w} or X_{w}^{*} is said to be modular convergent (more precisely, w - 216 convergent) to an element $x \in X$ if there exists a number $\lambda>0$, possibly depending 217 on $\left\{x_{n}\right\}$ and x, such that $\lim _{n \rightarrow \infty} w_{\lambda}\left(x_{n}, x\right)=0$. This will be written briefly as 218

Author's Proof

$x_{n} \xrightarrow{w} x($ as $n \rightarrow \infty)$, and any such element x will be called a modular limit of the 219 sequence $\left\{x_{n}\right\}$.

Note that if $\lim _{n \rightarrow \infty} w_{\lambda}\left(x_{n}, x\right)=0$, then by virtue of the monotonicity of the 221 function $\lambda^{\prime} \mapsto w_{\lambda^{\prime}}\left(x_{n}, x\right)$, we have $\lim _{n \rightarrow \infty} w_{\mu}\left(x_{n}, x\right)=0$ for all $\mu \geq \lambda$. 222

It is clear for a metric space (X, d) and the modular Eq. (1) on it that the metric 223 convergence and the modular convergence in X coincide. 224

We are going to show that the modular convergence is much weaker than the 225 metric convergence (in the sense to be made more precise below). First, we study to 226 what extent the above definition is correct, and what is the relationship between the 227 modular and metric convergences in X_{w} and X_{w}^{*}.
Theorem 1. Let w be a pseudomodular on X. We have:
(a) The modular spaces X_{w} and X_{w}^{*} are closed with respect to the modular ${ }_{230}$ convergence, i.e., if $\left\{x_{n}\right\} \subset X_{w}$ (or X_{w}^{*}), $x \in X$ and $x_{n} \xrightarrow{w} x$, then $x \in X_{w}$ (or 231 $x \in X_{w}^{*}$, respectively).
(b) If w is a strict modular on X, then the modular limit is determined uniquely (if 233 it exists).
Proof. (a) Since $x_{n} \xrightarrow{w} x$, there exists a $\lambda_{0}=\lambda_{0}\left(\left\{x_{n}\right\}, x\right)>0$ such that $w_{\lambda_{0}}\left(x_{n}, x\right) \rightarrow 0 \quad 235$ as $n \rightarrow \infty$.

1. First we treat the case when $\left\{x_{n}\right\} \subset X_{w}$. Let $\varepsilon>0$ be arbitrarily fixed. Then ${ }^{237}$ there is an $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that $w_{\lambda_{0}}\left(x_{n_{0}}, x\right) \leq \varepsilon / 2$. Since $x_{n_{0}} \in X_{w}=238$ $X_{w}\left(x_{0}\right)$, we have $w_{\lambda}\left(x_{n_{0}}, x_{0}\right) \rightarrow 0$ as $\lambda \rightarrow \infty$, and so, there exists a $\lambda_{1}={ }_{239}$ $\lambda_{1}(\varepsilon)>0$ such that $w_{\lambda_{1}}\left(x_{n_{0}}, x_{0}\right) \leq \varepsilon / 2$. Then conditions (iii) and (ii) from 240 Definition 1 imply

$$
w_{\lambda_{0}+\lambda_{1}}\left(x, x_{0}\right) \leq w_{\lambda_{0}}\left(x, x_{n_{0}}\right)+w_{\lambda_{1}}\left(x_{0}, x_{n_{0}}\right) \leq \varepsilon
$$

The function $\lambda \mapsto w_{\lambda}\left(x, x_{0}\right)$ is nonincreasing on $(0, \infty)$, and so,

$$
w_{\lambda}\left(x, x_{0}\right) \leq w_{\lambda_{0}+\lambda_{1}}\left(x, x_{0}\right) \leq \varepsilon \quad \text { for all } \quad \lambda \geq \lambda_{0}+\lambda_{1}
$$

2. Now suppose that $\left\{x_{n}\right\} \subset X_{w}^{*}$. Then there exists an $n_{0} \in \mathbb{N}$ such that 246 $w_{\lambda_{0}}\left(x_{n_{0}}, x\right)$ does not exceed 1. Since $x_{n_{0}} \in X_{w}^{*}=X_{w}^{*}\left(x_{0}\right)$, there is a $\lambda_{1}>0247$ such that $w_{\lambda_{1}}\left(x_{n_{0}}, x_{0}\right)<\infty$. Now it follows from conditions (iii) and (ii) that 248

$$
w_{\lambda_{0}+\lambda_{1}}\left(x, x_{0}\right) \leq w_{\lambda_{0}}\left(x, x_{n_{0}}\right)+w_{\lambda_{1}}\left(x_{0}, x_{n_{0}}\right)<\infty
$$

and so, $x \in X_{w}^{*}$.
(b) Let $\left\{x_{n}\right\} \subset X_{w}$ or X_{w}^{*} and $x, y \in X$ be such that $x_{n} \xrightarrow{w} x$ and $x_{n} \xrightarrow{w} y$. By the 251 definition of the modular convergence, there exist $\lambda=\lambda\left(\left\{x_{n}\right\}, x\right)>0$ and

Author's Proof

Modular Contractions and Their Application

$$
\mu=\mu\left(\left\{x_{n}\right\}, y\right)>0 \text { such that } w_{\lambda}\left(x_{n}, x\right) \rightarrow 0 \text { and } w_{\mu}\left(x_{n}, y\right) \rightarrow 0 \text { as } n \rightarrow \infty . \text { By } 252
$$ conditions (iii) and (ii), 253

$$
w_{\lambda+\mu}(x, y) \leq w_{\lambda}\left(x, x_{n}\right)+w_{\mu}\left(y, x_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

It follows that $w_{\lambda+\mu}(x, y)=0$, and so, by condition (is) from Definition 1, we get $x=y$.

It was shown in [9, Theorem 2.13] that if w is a modular on X, then for $\left\{x_{n}\right\} \subset X_{w} \quad 255$ and $x \in X_{w}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{w}\left(x_{n}, x\right)=0 \quad \text { iff } \quad \lim _{n \rightarrow \infty} w_{\lambda}\left(x_{n}, x\right)=0 \text { for all } \lambda>0 \tag{12}
\end{equation*}
$$

and so, the metric convergence (with respect to the metric d_{w}) implies the modular 257 convergence (cf. Definition 3), but not vice versa in general. As the proof of [9, 258 Theorem 2.13] suggests, Eq. (12) is also true for $\left\{x_{n}\right\} \subset X_{w}^{*}$ and $x \in X_{w}^{*}$. An assertion 259 similar to Eq. (12) holds for Cauchy sequences from the modular spaces X_{w} and $X_{w}^{*} .260$

Now we establish a result similar to Eq. (12) for convex modulars. 261
Theorem 2. Let w be a convex modular on X. Given a sequence $\left\{x_{n}\right\}$ from $X_{w}^{*}(=262$ $\left.X_{w}\right)$ and an element $x \in X_{w}^{*}$, we have 263

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{w}^{*}\left(x_{n}, x\right)=0 \quad \text { iff } \quad \lim _{n \rightarrow \infty} w_{\lambda}\left(x_{n}, x\right)=0 \text { for all } \lambda>0 . \tag{264}
\end{equation*}
$$

A similar assertion holds for Cauchy sequences with respect to d_{w}^{*}. 265
Proof. Step 1. Sufficiency. Given $\varepsilon>0$, by the assumption, there exists a number 266 $n_{0}(\varepsilon) \in \mathbb{N}$ such that $w_{\varepsilon}\left(x_{n}, x\right) \leq 1$ for all $n \geq n_{0}(\varepsilon)$, and so, the Definition (9) of 267 d_{w}^{*} implies $d_{w}^{*}\left(x_{n}, x\right) \leq \varepsilon$ for all $n \geq n_{0}(\varepsilon)$.

Necessity. First, suppose that $0<\lambda \leq 1$. Given $\varepsilon>0$, we have either (a) $\varepsilon<\lambda$ or 269 (b) $\varepsilon \geq \lambda$. In case (a), by the assumption, there is an $n_{0}(\varepsilon) \in \mathbb{N}$ such that $d_{w}^{*}\left(x_{n}, x\right)<270$ ε^{2} for all $n \geq n_{0}(\varepsilon)$, and so, by the definition of $d_{w}^{*}, w_{\varepsilon^{2}}\left(x_{n}, x\right) \leq 1$ for all $n \geq n_{0}(\varepsilon)$. 271 Since $\varepsilon^{2}<\lambda^{2} \leq \lambda$ and $\varepsilon<\lambda$, inequality (7) yields

$$
w_{\lambda}\left(x_{n}, x\right) \leq \frac{\varepsilon^{2}}{\lambda} w_{\varepsilon^{2}}\left(x_{n}, x\right) \leq \frac{\varepsilon}{\lambda} \varepsilon<\varepsilon \quad \text { for all } \quad n \geq n_{0}(\varepsilon) .
$$

In case (b) we set $n_{1}(\varepsilon)=n_{0}(\lambda / 2)$, where $n_{0}(\cdot)$ is as above. Then, as we have just 274 established, $w_{\lambda}\left(x_{n}, x\right)<\lambda / 2 \leq \varepsilon / 2<\varepsilon$ for all $n \geq n_{1}(\varepsilon)$.

Now, assume that $\lambda>1$. Again, given $\varepsilon>0$, we have either (a) $\varepsilon<\lambda$ or (b) 276 $\varepsilon \geq \lambda$. In case (a) there is an $N_{0}(\varepsilon) \in \mathbb{N}$ such that $d_{w}^{*}\left(x_{n}, x\right)<\varepsilon$ for all $n \geq N_{0}(\varepsilon), 277$ and so, $w_{\varepsilon}\left(x_{n}, x\right) \leq 1$ for all $n \geq N_{0}(\varepsilon)$. Since $\varepsilon<\lambda$ and $\lambda>1$, by virtue of Eq. (7), 278 we find

$$
w_{\lambda}\left(x_{n}, x\right) \leq \frac{\varepsilon}{\lambda} w_{\varepsilon}\left(x_{n}, x\right) \leq \frac{\varepsilon}{\lambda}<\varepsilon \quad \text { for all } \quad n \geq N_{0}(\varepsilon) .
$$

Author's Proof

In case (b) we put $N_{1}(\varepsilon)=N_{0}(\lambda / 2)$, where $N_{0}(\cdot)$ is as above. Then it follows that ${ }_{281}{ }_{282}$
$w_{\lambda}\left(x_{n}, x\right)<\lambda / 2 \leq \varepsilon / 2<\varepsilon$ for all $n \geq N_{1}(\varepsilon)$.
Thus, we have shown that $w_{\lambda}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $\lambda>0$.
Step 2. The assertion for Cauchy sequences is of the form

$$
\lim _{n, m \rightarrow \infty} d_{w}^{*}\left(x_{n}, x_{m}\right)=0 \quad \text { iff } \quad \lim _{n, m \rightarrow \infty} w_{\lambda}\left(x_{n}, x_{m}\right)=0 \text { for all } \lambda>0
$$

its proof is similar to the one given in Step 1 with suitable modifications.

Theorem 2 shows, in particular, that in a metric space (X, d) with modular Eq. (1) 287 on it the metric and modular convergences are equivalent.

Definition 4. A pseudomodular w on X is said to satisfy the (sequential) $\Delta_{2}-289$ condition (on X_{w}^{*}) if the following condition holds: given a sequence $\left\{x_{n}\right\} \subset X_{w}^{*} 290$ and $x \in X_{w}^{*}$, if there exists a number $\lambda>0$, possibly depending on $\left\{x_{n}\right\}$ and x, such 291 that $\lim _{n \rightarrow \infty} w_{\lambda}\left(x_{n}, x\right)=0$, then $\lim _{n \rightarrow \infty} w_{\lambda / 2}\left(x_{n}, x\right)=0$.

A similar definition applies with X_{w}^{*} replaced by X_{w}. 293
In the case of a metric space (X, d) the modular Eq. (1) clearly satisfies the $\Delta_{2}-294$ condition on X.

The following important observation, which generalizes the corresponding result 296 from the theory of classical modulars on linear spaces (cf. [22, I,5.2.IV]), provides 297 a criterion for the metric and modular convergences to coincide.

Theorem 3. Given a modular w on X, we have the metric convergence on X_{w}^{*} (with 299 respect to d_{w} if w is arbitrary, and with respect to d_{w}^{*} if w is convex) coincides with 300 the modular convergence iff w satisfies the Δ_{2}-condition on X_{w}^{*}.

Proof. Let $\left\{x_{n}\right\} \subset X_{w}^{*}$ and $x \in X_{w}^{*}$ be given. We know from Eq. (12) and Theorem 2

$$
\begin{equation*}
\lim _{n \rightarrow \infty} w_{\lambda}\left(x_{n}, x\right)=0 \quad \text { for all } \quad \lambda>0 \tag{13}
\end{equation*}
$$

\Leftrightarrow Suppose that the metric convergence coincides with the modular conver- 305 gence on X_{w}^{*}. If there exists a $\lambda_{0}>0$ such that $w_{\lambda_{0}}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, then x_{n} is 306 modular convergent to x, and so, x_{n} converges to x in metric (d_{w} or d_{w}^{*}). It follows 307 that Eq. (13) holds implying, in particular, $w_{\lambda_{0} / 2}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, and so, $w 308$ satisfies the Δ_{2}-condition.
(\Leftarrow) By virtue of Eq. (13), the metric convergence on X_{w}^{*} always implies the 310 modular convergence, and so, it suffices to verify the converse assertion, namely: 311 if $x_{n} \xrightarrow{w} x$, then Eq. (13) holds. In fact, if $x_{n} \xrightarrow{w} x$, then $w_{\lambda_{0}}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty 312$ for some constant $\lambda_{0}=\lambda_{0}\left(\left\{x_{n}\right\}, x\right)>0$. The Δ_{2}-condition implies $w_{\lambda_{0} / 2}\left(x_{n}, x\right) \rightarrow 0{ }_{313}$ as $n \rightarrow \infty$, and so, the induction yields $w_{\lambda_{0} / 2^{j}}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $j \in \mathbb{N}$.

Author's Proof

Modular Contractions and Their Application

Now, given $\lambda>0$, there exists a $j=j(\lambda) \in \mathbb{N}$ such that $\lambda>\lambda_{0} / 2^{j}$. By the 314 monotonicity of $\lambda \mapsto w_{\lambda}\left(x_{n}, x\right)$, we have

$$
w_{\lambda}\left(x_{n}, x\right) \leq w_{\lambda_{0} / 2^{j}}\left(x_{n}, x\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

By the arbitrariness of $\lambda>0$, condition (13) follows.
Definition 5. Given a modular w on X, a sequence $\left\{x_{n}\right\} \subset X_{w}^{*}$ is said to be 317 modular Cauchy (or w-Cauchy) if there exists a number $\lambda=\lambda\left(\left\{x_{n}\right\}\right)>0$ such 318 that $w_{\lambda}\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$, i.e.,

$$
\forall \varepsilon>0 \exists n_{0}(\varepsilon) \in \mathbb{N} \text { such that } \forall n \geq n_{0}(\varepsilon), m \geq n_{0}(\varepsilon): w_{\lambda}\left(x_{n}, x_{m}\right) \leq \varepsilon .
$$

It follows from Theorem 2 (Step 2 in its proof) and Definition 5 that a sequence from X_{w}^{*}, which is Cauchy in metric d_{w} or d_{w}^{*}, is modular Cauchy.

Note that a modular convergent sequence is modular Cauchy. In fact, if $x_{n} \xrightarrow{w} x$,

The following definition will play an important role below.
Definition 6. Given a modular w on X, the modular space X_{w}^{*} is said to be modular 329 complete (or w-complete) if each modular Cauchy sequence from X_{w}^{*} is modular 330 convergent in the following (more precise) sense: if $\left\{x_{n}\right\} \subset X_{w}^{*}$ and there exists a $\lambda=\lambda\left(\left\{x_{n}\right\}\right)>0$ such that $\lim _{n, m \rightarrow \infty} w_{\lambda}\left(x_{n}, x_{m}\right)=0$, then there exists an $x \in X_{w}^{*}$ such that $\lim _{n \rightarrow \infty} w_{\lambda}\left(x_{n}, x\right)=0$.

The notions of modular convergence, modular limit and modular completeness, introduced above, are illustrated by examples in the next section. It is clear from Eq. (1) that for a metric space (X, d) these notions coincide with respective notions in the metric space setting.

4 Examples of Metric and Modular Convergences

We begin with recalling certain properties of φ-functions and convex functions on 339 the set of all nonnegative reals $\mathbb{R}^{+}=[0, \infty)$.

A function $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is said to be a φ-function if it is continuous, 341 nondecreasing and unbounded (and so, $\varphi(\infty) \equiv \lim _{u \rightarrow \infty} \varphi(u)=\infty$) and assumes the 342 value zero only at zero: $\varphi(u)=0$ iff $u=0$.

If $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a convex function such that $\varphi(u)=0$ iff $u=0$, then it is 344 (automatically) continuous, strictly increasing and unbounded, and so, it is a convex

Author's Proof

is continuous, strictly increasing, $\varphi^{-1}(u)=0$ iff $u=0, \varphi^{-1}(\infty)=\infty$, and which is 348 subadditive: $\varphi^{-1}\left(u_{1}+u_{2}\right) \leq \varphi^{-1}\left(u_{1}\right)+\varphi^{-1}\left(u_{2}\right)$ for all $u_{1}, u_{2} \in \mathbb{R}^{+}$. The function $\varphi 349$ is said to satisfy the Δ_{2}-condition at infinity (cf. [19, Sect. I.4]) if there exist constants 350 $K>0$ and $u_{0} \geq 0$ such that $\varphi(2 u) \leq K \varphi(u)$ for all $u \geq u_{0}$.
4.1. Let the triple $(M, d,+)$ be a metric semigroup, i.e., the pair (M, d) is a metric 352 space with metric d, the pair $(M,+)$ is an Abelian semigroup with respect ${ }_{353}$ to the operation of addition + and d is translation invariant in the sense 354 that $d(p+r, q+r)=d(p, q)$ for all $p, q, r \in M$. Any normed linear space 355 $(M,|\cdot|)$ is a metric semigroup with the induced metric $d(p, q)=|p-q|,{ }_{356}$ $p, q \in M$ and the addition operation + from M. If $K \subset M$ is a convex cone ${ }_{357}$ (i.e., $p+q, \lambda p \in K$ whenever $p, q \in K$ and $\lambda \geq 0$), then the triple $(K, d,+) 358$ is also a metric semigroup. A nontrivial example of a metric semigroup is 359 as follows (cf. [12,26]). Let $(Y,|\cdot|)$ be a real normed space and M be the 360 family of all nonempty closed bounded convex subsets of Y equipped with the 361 Hausdorff metric d given by $d(P, Q)=\max \{\mathrm{e}(P, Q), \mathrm{e}(Q, P)\}$, where $P, Q \in M 362$ and $\mathrm{e}(P, Q)=\sup _{p \in P} \inf _{q \in Q}|p-q|$. Given $P, Q \in M$, we define $P \oplus Q$ as the ${ }_{363}$ closure in Y of the Minkowski sum $P+Q=\{p+q: p \in P, q \in Q\}$. Then the 364 triple (M, d, \oplus) is a metric semigroup (actually, M is an abstract convex cone). 365 For more information on metric semigroups and their special cases, abstract 366 convex cones, including examples, we refer to $[5,6,9,10$] and references 367 therein.

Given a closed interval $[a, b] \subset \mathbb{R}$ with $a<b$, we denote by $\mathbb{X}=M^{[a, b]}$ the 369 set of all mappings $x:[a, b] \rightarrow M$. If φ is a convex φ-function on \mathbb{R}^{+}, we define 370 a function $w:(0, \infty) \times \mathbb{X} \times \mathbb{X} \rightarrow[0, \infty]$ for all $\lambda>0$ and $x, y \in \mathbb{X}$ by (note that ${ }_{371}$ w depends on φ)

$$
\begin{equation*}
w_{\lambda}(x, y)=\sup _{\pi} \sum_{i=1}^{m} \varphi\left(\frac{d\left(x\left(t_{i}\right)+y\left(t_{i-1}\right), x\left(t_{i-1}\right)+y\left(t_{i}\right)\right)}{\lambda \cdot\left(t_{i}-t_{i-1}\right)}\right) \cdot\left(t_{i}-t_{i-1}\right), \tag{14}
\end{equation*}
$$

where the supremum is taken over all partitions $\pi=\left\{t_{i}\right\}_{i=1}^{m}$ of the interval 373 $[a, b]$, i.e., $m \in \mathbb{N}$ and $a=t_{0}<t_{1}<t_{2}<\cdots<t_{m-1}<t_{m}=b$. It was shown in 374 [5, Sects. 3 and 4] that w is a convex pseudomodular on \mathbb{X}. Thus, given $x_{0} \in M$, 375 the modular space $\mathbb{X}_{w}^{*}=\mathbb{X}_{w}^{*}\left(x_{0}\right)$ (here x_{0} denotes also the constant mapping 376 $x_{0}(t)=x_{0}$ for all $t \in[a, b]$), which was denoted in [5, Eq. (3.20) and Sect. 4.1] 377 by $\mathrm{GV}_{\varphi}([a, b] ; M)$ and called the space of mappings of bounded generalized 378 φ-variation, is well defined and, by the translation invariance of d on M, we 379 have $x \in \mathbb{X}_{w}^{*}=\mathrm{GV}_{\varphi}([a, b] ; M)$ iff $x:[a, b] \rightarrow M$ and there exists a constant 380 $\lambda=\lambda(x)>0$ such that

$$
\begin{equation*}
w_{\lambda}\left(x, x_{0}\right)=\sup _{\pi} \sum_{i=1}^{m} \varphi\left(\frac{d\left(x\left(t_{i}\right), x\left(t_{i-1}\right)\right)}{\lambda\left(t_{i}-t_{i-1}\right)}\right)\left(t_{i}-t_{i-1}\right)<\infty . \tag{15}
\end{equation*}
$$

Author's Proof

Modular Contractions and Their Application

Note that $w_{\lambda}\left(x, x_{0}\right)$ from Eq. (15) is independent of $x_{0} \in M$; this value is called 382 the generalized φ_{λ}-variation of x, where $\varphi_{\lambda}(u)=\varphi(u / \lambda), u \in \mathbb{R}^{+}$. Since ${ }_{383}$ w satisfies on \mathbb{X} conditions (i'), (ii) and (iv) (and not (i) in general) from 384 Definition 1, the quantity d_{w}^{*} from Eq. (9) is only a pseudometric on \mathbb{X}_{w}^{*} and, in 385 particular, only $d_{w}^{*}(x, x)=0$ holds for $x \in \mathbb{X}_{w}^{*}$ (note that $d_{w}^{*}(x, y)$ was denoted 386 by $\Delta_{\varphi}(x, y)$ in [5, Equality (4.5)]).
4.2. In order to "turn" Eq. (14) into a modular, we fix an $x_{0} \in M$ and set $X=\{x$: 388 $\left.[a, b] \rightarrow M \mid x(a)=x_{0}\right\} \subset \mathbb{X}$. We assert that w from Eq. (14) is a strict convex 389 modular on X. In fact, given $x, y \in X$ and $t, s \in[a, b]$ with $t \neq s$, it follows from 390 Eq. (14) that

$$
\varphi\left(\frac{d(x(t)+y(s), x(s)+y(t))}{\lambda|t-s|)}\right)|t-s| \leq w_{\lambda}(x, y)
$$

and so, by the translation invariance of d and the triangle inequality,

$$
\begin{align*}
|d(x(t), y(t))-d(x(s), y(s))| & \leq d(x(t)+y(s), x(s)+y(t)) \\
& \leq \lambda|t-s| \varphi^{-1}\left(\frac{w_{\lambda}(x, y)}{|t-s|}\right) \tag{16}
\end{align*}
$$

Now, if we suppose that $w_{\lambda}(x, y)=0$ for some $\lambda>0$, then for all $t \in[a, b]$, 394 $t \neq s=a$, we get (note that $\left.x(a)=y(a)=x_{0}\right)$

$$
d(x(t), y(t))=|d(x(t), y(t))-d(x(a), y(a))| \leq 0 .
$$

Thus, $x(t)=y(t)$ for all $t \in[a, b]$, and so, $x=y$ as elements of X.
It is clear for the modular space $X_{w}^{*}=X_{w}^{*}\left(x_{0}\right)$ that

$$
\begin{equation*}
\left.\left.X_{w}^{*}=\mathbb{X}_{w}^{*} \cap X=\boxtimes a, b\right] ; M\right) \cap X \tag{17}
\end{equation*}
$$

i.e., $x \in X_{w}^{*}$ iff $x:[a, b] \rightarrow M, x(a)=x_{0}$ and Eq. (15) holds for some $\lambda>0$. 399 Moreover, the function d_{w}^{*} from Eq. (9) is a metric on X_{w}^{*}.
4.3. In this section we show that if $(M, d,+)$ is a complete metric semigroup (i.e. 401 (M, d) is complete as a metric space), then the modular space X_{w}^{*} from Eq. (17) 402 is modular complete in the sense of Definition 6.

Let $\left\{x_{n}\right\} \subset X_{w}^{*}$ be a w-Cauchy sequence, so that $w_{\lambda}\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow 404$ ∞ for some constant $\lambda=\lambda\left(\left\{x_{n}\right\}\right)>0$. Given $n, m \in \mathbb{N}$ and $t \in[a, b], t \neq a, 405$ it follows from Eq. (16) with $x=x_{n}, y=x_{m}$ and $s=a$ that (again note that 406 $x_{n}(a)=x_{0}$ for all $n \in \mathbb{N}$)

$$
d\left(x_{n}(t), x_{m}(t)\right) \leq \lambda(t-a) \varphi^{-1}\left(\frac{w_{\lambda}\left(x_{n}, x_{m}\right)}{t-a}\right)
$$

Author's Proof

This estimate, the modular Cauchy property of $\left\{x_{n}\right\}$, the continuity of $\varphi^{-1}{ }_{409}$ and the completeness of $(M, d,+)$ imply the existence of an $x:[a, b] \rightarrow M, 410$ $x(a)=x_{0}$ (and so, $x \in X$), such that the sequence $\left\{x_{n}\right\}$ converges pointwise 411 on $[a, b]$ to x, i.e., $\lim _{n \rightarrow \infty} d\left(x_{n}(t), x(t)\right)=0$ for all $t \in[a, b]$. We assert 412 that $\lim _{n \rightarrow \infty} w_{\lambda}\left(x_{n}, x\right)=0$. By the (sequential) lower semicontinuity of the 413 functional $w_{\lambda}(\cdot, \cdot)$ from Eq. (14) (cf. [5, Assertion (4.8) on p. 27]), we get 414

$$
\begin{equation*}
w_{\lambda}\left(x_{n}, x\right) \leq \liminf _{m \rightarrow \infty} w_{\lambda}\left(x_{n}, x_{m}\right) \quad \text { for all } n \in \mathbb{N} . \tag{18}
\end{equation*}
$$

Now, given $\varepsilon>0$, by the modular Cauchy condition for $\left\{x_{n}\right\}$, there is an 415 $n_{0}(\varepsilon) \in \mathbb{N}$ such that $w_{\lambda}\left(x_{n}, x_{m}\right) \leq \varepsilon$ for all $n \geq n_{0}(\varepsilon)$ and $m \geq n_{0}(\varepsilon)$, and so, $\quad 416$

$$
\limsup _{m \rightarrow \infty} w_{\lambda}\left(x_{n}, x_{m}\right) \leq \sup _{m \geq n_{0}(\varepsilon)} w_{\lambda}\left(x_{n}, x_{m}\right) \leq \varepsilon \quad \text { for all } n \geq n_{0}(\varepsilon)
$$

Since the limit inferior does not exceed the limit superior (for any real se- 418 quences), it follows from the last displayed line and Eq. (18) that $w_{\lambda}\left(x_{n}, x\right) \leq \varepsilon 419$ for all $n \geq n_{0}(\varepsilon)$, i.e., $w_{\lambda}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. Finally, since, by Theorem 1(a), 420 X_{w}^{*} is closed with respect to the modular convergence, we infer that $x \in X_{w}^{*}, 421$ which was to be proved.
4.4. In order to be able to calculate explicitly, for the sake of simplicity we assume ${ }_{423}$ furthermore that $M=\mathbb{R}$ with $d(p, q)=|p-q|, p, q \in \mathbb{R}$, and the function 424 φ satisfies the Orlicz condition at infinity: $\varphi(u) / u \rightarrow \infty$ as $u \rightarrow \infty$. In this ${ }_{425}$ case the value $w_{1}(x, 0)$ (cf. Eq. (15) with $\lambda=1$) is known as the φ-variation ${ }_{426}$ of the function $x:[a, b] \rightarrow \mathbb{R}$ (in the sense of F. Riesz, Yu. T. Medvedev and ${ }^{427}$ W. Orlicz), the function x with $w_{1}(x, 0)<\infty$ is said to be of bounded φ - ${ }^{428}$ variation on $[a, b]$, and we have

$$
\begin{equation*}
w_{\lambda}(x, y)=w_{\lambda}(x-y, 0)=w_{1}\left(\frac{x-y}{\lambda}, 0\right), \quad \lambda>0, \quad x, y \in \mathbb{X}=\mathbb{R}^{[a, b]} \tag{19}
\end{equation*}
$$

Denote by $\mathrm{AC}[a, b]$ the space of all absolutely continuous real-valued functions 430 on $[a, b]$ and by $\mathrm{L}^{1}[a, b]$ the space of all (equivalence classes of) Lebesgue 431 summable functions on $[a, b]$.

The following criterion is known for functions $x:[a, b] \rightarrow \mathbb{R}$ to be in the ${ }^{433}$ space $\mathrm{GV}_{\varphi}[a, b]=\mathbb{X}_{w}^{*}$ (for more details see [2], [5, Sects. 3 and 4], [11], [20, 434 Sect. 2.4], [21]): $x \in \mathrm{GV}_{\varphi}[a, b]$ iff $w_{\lambda}(x, 0)=w_{1}(x / \lambda, 0)<\infty$ for some $\lambda=435$ $\lambda(x)>0$ (i.e., x / λ is of bounded φ-variation on $[a, b])$ iff $x \in \mathrm{AC}[a, b]$ and 436 its derivative $x^{\prime} \in \mathrm{L}^{1}[a, b]$ (defined almost everywhere on $[a, b]$) satisfies the ${ }_{437}$ condition:

$$
\begin{equation*}
w_{\lambda}\left(x, x_{0}\right)=w_{\lambda}(x, 0)=\int_{a}^{b} \varphi\left(\frac{\left|x^{\prime}(t)\right|}{\lambda}\right) d t<\infty, \quad x_{0} \in \mathbb{R} . \tag{20}
\end{equation*}
$$

Author's Proof

Modular Contractions and Their Application

Given $x_{0} \in \mathbb{R}$, we set $X=\left\{x:[a, b] \rightarrow \mathbb{R} \mid x(a)=x_{0}\right\}$, and so (cf. Eq. (17)), 439

$$
\begin{equation*}
\left.\left.X_{w}^{*}=X_{w}^{*}\left(x_{0}\right)=\{x \in\}, b\right]: x(a)=x_{0}\right\} . \tag{21}
\end{equation*}
$$

Thus, the modular w is strict and convex on X and the modular space Eq. (21) 440 is modular complete. Note that X_{w}^{*} is not a linear subspace of $\mathrm{GV}_{\varphi}[a, b]$, which 441 is a normed Banach algebra (cf. [3, Theorem 3.6]).
4.5. Here we present an example when the metric and modular convergences 443 coincide. This example is a modification of Example 3.5(c) from [5]. We set 444 $[a, b]=[0,1], M=\mathbb{R}$ and $\varphi(u)=e^{u}-1$ for $u \in \mathbb{R}^{+}$. Clearly, φ satisfies the 445 Orlicz condition but does not satisfy the Δ_{2}-condition at infinity.

Given a number $\alpha>0$, we define a function $x_{\alpha}:[0,1] \rightarrow \mathbb{R}$ by

$$
x_{\alpha}(t)=\alpha t(1-\log t) \quad \text { if } \quad 0<t \leq 1 \quad \text { and } \quad x_{\alpha}(0)=0 .
$$

Since $x_{\alpha}^{\prime}(t)=-\alpha \log t$ for $0<t \leq 1$, by Eq. (20), for any number $\lambda>0$ we 449 find

$$
w_{\lambda}\left(x_{\alpha}, 0\right)=\int_{0}^{1} \varphi\left(\frac{\left|x_{\alpha}^{\prime}(t)\right|}{\lambda}\right) d t=\int_{0}^{1} \frac{d t}{t^{\alpha / \lambda}}-1=\left\{\begin{array}{cc}
\infty & \text { if } 0<\lambda \leq \alpha \\
\frac{\alpha}{\lambda-\alpha} \text { if } \quad \lambda>\alpha
\end{array}\right.
$$

It follows that the modular w can take infinite values (although it is strict) and 452 that $x_{\alpha} \in X_{w}^{*}=X_{w}^{*}(0)$ for all $\alpha>0$. Also, we have

$$
d_{w}^{*}\left(x_{\alpha}, 0\right)=\inf \left\{\lambda>0: w_{\lambda}\left(x_{\alpha}, 0\right) \leq 1\right\}=2 \alpha .
$$

Thus, if we set $\alpha=\alpha(n)=1 / n$ and $x_{n}=x_{\alpha(n)}$ for $n \in \mathbb{N}$, then we find that 455 $d_{w}^{*}\left(x_{n}, 0\right) \rightarrow 0$ as $n \rightarrow \infty$ and $w_{\lambda}\left(x_{n}, 0\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $\lambda>0$, and, in 456 accordance with Theorem 2, these two convergences are equivalent.
4.6. Here we expose an example when the modular convergence is weaker than the 458 metric convergence. Let $[a, b], M$ and φ be as in Example 4.5.

Given $0 \leq \beta \leq 1$, we define a function $x_{\beta}:[0,1] \rightarrow \mathbb{R}$ as follows: 460

$$
x_{\beta}(t)=t-(t+\beta) \log (t+\beta)+\beta \log \beta \quad \text { if } \quad \beta>0 \quad \text { and } \quad 0 \leq t \leq 1
$$461

and

$$
x_{0}(t)=t-t \log t \quad \text { if } \quad 0<t \leq 1 \quad \text { and } \quad x_{0}(0)=0 .
$$

Since $x_{\beta}^{\prime}(t)=-\log (t+\beta)$ for $\beta>0$ and $t \in[0,1]$, we have 464
$\left|x_{\beta}^{\prime}(t)\right|=-\log (t+\beta)$ if $0 \leq t \leq 1-\beta$, and $\left|x_{\beta}^{\prime}(t)\right|=\log (t+\beta)$ if $1-\beta \leq t \leq 1,465$
and so, by virtue of Eq. (20), given $\lambda>0$, we find

$$
\begin{equation*}
w_{\lambda}\left(x_{\beta}, 0\right)=\int_{0}^{1} \varphi\left(\left|x_{\beta}^{\prime}(t)\right| / \lambda\right) d t=I_{1}+I_{2}-1, \quad \beta>0 \tag{467}
\end{equation*}
$$

where

$$
I_{1}=\int_{0}^{1-\beta} \frac{d t}{(t+\beta)^{1 / \lambda}}=\left\{\begin{array}{cc}
\frac{\lambda}{\lambda-1}\left(1-\beta^{(\lambda-1) / \lambda}\right) & \text { if } 0<\lambda \neq 1 \\
-\log \beta & \text { if } \quad \lambda=1
\end{array}\right.
$$

and

$$
I_{2}=\int_{1-\beta}^{1}(t+\beta)^{1 / \lambda} d t=\frac{\lambda}{\lambda+1}\left((1+\beta)^{(\lambda+1) / \lambda}-1\right) \quad \text { for all } \lambda>0
$$

Also, $w_{\lambda}\left(x_{0}, 0\right)=\infty$ if $0<\lambda \leq 1$, and $w_{\lambda}\left(x_{0}, 0\right)=1 /(\lambda-1)$ if $\lambda>1$ (cf. 472 Example 4.5 with $\alpha=1$). Thus, $x_{\beta} \in X_{w}^{*}=X_{w}^{*}(0)$ for all $0 \leq \beta \leq 1$. 473

Clearly, x_{β} converges pointwise on $[0,1]$ to x_{0} as $\beta \rightarrow+0$ (actually, the first 474 inequality in the proof of [5, Lemma 4.1(a)] shows that the convergence is 475 uniform on $[0,1]$).

Now we calculate the values $w_{\lambda}\left(x_{\beta}, x_{0}\right)$ for $\lambda>0$ and $d_{w}^{*}\left(x_{\beta}, x_{0}\right)$ and 477 investigate their convergence to zero as $\beta \rightarrow+0$. Since

$$
\left(x_{\beta}-x_{0}\right)^{\prime}(t)=-\log (t+\beta)+\log t \quad \text { for } \quad 0<t \leq 1
$$

we have

$$
\begin{equation*}
\frac{\left|\left(x_{\beta}-x_{0}\right)^{\prime}(t)\right|}{\lambda}=\frac{\log (t+\beta)-\log t}{\lambda}=\log \left(1+\frac{\beta}{t}\right)^{1 / \lambda} \tag{481}
\end{equation*}
$$

and so, by virtue of Eqs. (19) and (20),

$$
w_{\lambda}\left(x_{\beta}, x_{0}\right)=\int_{0}^{1} \varphi\left(\frac{\left|\left(x_{\beta}-x_{0}\right)^{\prime}(t)\right|}{\lambda}\right) d t=-1+\int_{0}^{1}\left(1+\frac{\beta}{t}\right)^{1 / \lambda} d t
$$

If $0<\lambda \leq 1$, we have

$$
\left(1+\frac{\beta}{t}\right)^{1 / \lambda} \geq 1+\frac{\beta}{t} \quad \text { and } \quad \int_{0}^{1}\left(1+\frac{\beta}{t}\right) d t=\infty
$$

and so, $w_{\lambda}\left(x_{\beta}, x_{0}\right)=\infty$ for all $0<\beta \leq 1$ and $0<\lambda \leq 1$.
Now suppose that $\lambda>1$. Then

$$
w_{\lambda}\left(x_{\beta}, x_{0}\right)=-1+\int_{0}^{\beta}\left(1+\frac{\beta}{t}\right)^{1 / \lambda} d t+\int_{\beta}^{1}\left(1+\frac{\beta}{t}\right)^{1 / \lambda} d t \equiv-1+I_{1}+I_{2}
$$

Author's Proof

Modular Contractions and Their Application
where

$$
\begin{aligned}
I_{1} & \leq \int_{0}^{\beta}\left(\frac{2 \beta}{t}\right)^{1 / \lambda} d t=(2 \beta)^{1 / \lambda} \int_{0}^{\beta} t^{-1 / \lambda} d t=(2 \beta)^{1 / \lambda} \cdot \frac{\lambda}{\lambda-1} \cdot \beta^{1-(1 / \lambda)}= \\
& =2^{1 / \lambda} \cdot \frac{\lambda \beta}{\lambda-1} \rightarrow 0 \quad \text { as } \quad \beta \rightarrow+0
\end{aligned}
$$

and

$$
I_{2} \leq \int_{\beta}^{1}\left(1+\frac{\beta}{t}\right) d t=(1-\beta)-\beta \log \beta \rightarrow 1 \quad \text { as } \quad \beta \rightarrow+0 .
$$

It follows that $w_{\lambda}\left(x_{\beta}, x_{0}\right) \rightarrow 0$ as $\beta \rightarrow+0$ for all $\lambda>1$.
On the other hand, since $w_{\lambda}\left(x_{\beta}, x_{0}\right)=\infty$ for all $0<\beta \leq 1$ and $0<\lambda \leq 1493$ (as noticed above), we get $d_{w}^{*}\left(x_{\beta}, x_{0}\right)=\inf \left\{\lambda>0: w_{\lambda}\left(x_{\beta}, x_{0}\right) \leq 1\right\} \geq 1$, and 494 so, $d_{w}^{*}\left(x_{\beta}, x_{0}\right)$ cannot converge to zero as $\beta \rightarrow+0$.

Thus, if we set $\beta=\beta(n)=1 / n$ and $x_{n}=x_{\beta(n)}$ for $n \in \mathbb{N}$, then we find 496 $d_{w}^{*}\left(x_{n}, x_{0}\right) \nrightarrow 0$ as $n \rightarrow \infty$, whereas $w_{\lambda}\left(x_{n}, x_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$ only for $\lambda>1$.

5 A Fixed-Point Theorem for Modular Contractions

Since convex modulars play the central role in this section, we concentrate mainly

Theorem 4. Let w be a convex modular on X and $k>0$ be a constant. Given a 502 map $T: X_{w}^{*} \rightarrow X_{w}^{*}$ and $x, y \in X_{w}^{*}$, the Lipschitz condition $d_{w}^{*}(T x, T y) \leq k d_{w}^{*}(x, y)$ is 503 equivalent to the following: $w_{k \lambda+0}(T x, T y) \leq 1$ for all $\lambda>0$ such that $w_{\lambda}(x, y) \leq 1.504$
Proof. First, note that, given $c>0$, the function, defined by $\bar{w}_{\lambda}(x, y)=w_{c \lambda}(x, y)$, 505 $\lambda>0, x, y \in X$, is also a convex modular on X and $d_{\bar{w}}^{*}=\frac{1}{c} d_{w}^{*}$:

$$
\begin{align*}
d_{\bar{w}}^{*}(x, y) & =\inf \left\{\lambda>0: w_{c \lambda}(x, y) \leq 1\right\}=\inf \left\{\mu / c>0: w_{\mu}(x, y) \leq 1\right\}= \\
& =\frac{1}{c} d_{w}^{*}(x, y) \quad \text { for all } x, y \in X_{\bar{w}}^{*}=X_{w}^{*} \tag{22}
\end{align*}
$$

Necessity. We may suppose that $x \neq y$. For any $c>k$, by the assumption, we find 507 $d_{w}^{*}(T x, T y) \leq k d_{w}^{*}(x, y)<c d_{w}^{*}(x, y)$, whence $d_{w}^{*}(T x, T y) / c<d_{w}^{*}(x, y)$. It follows that 508 if $\lambda>0$ is such that $w_{\lambda}(x, y) \leq 1$, then, by Eq. (9), $d_{w}^{*}(x, y) \leq \lambda$ implying, in view 509 of Eq. (22),

$$
\lambda>\frac{1}{c} d_{w}^{*}(T x, T y)=\inf \left\{\mu>0: w_{c \mu}(T x, T y) \leq 1\right\}
$$

Author's Proof

and so, $w_{c \lambda}(T x, T y) \leq 1$. Passing to the limit as $c \rightarrow k+0$, we arrive at the desired 512 inequality $w_{k \lambda+0}(T x, T y) \leq 1$.

Sufficiency. By the assumption, the set $\left\{\lambda>0: w_{\lambda}(x, y) \leq 1\right\}$ is contained in the 514 set $\left\{\lambda>0: w_{k \lambda}^{+}(T x, T y)=w_{k \lambda+0}(T x, T y) \leq 1\right\}$, and so, taking the infima, by virtue 515 of Eqs. (9), (22) and the equality $d_{w^{+}}^{*}=d_{w}^{*}$, we get

$$
\begin{equation*}
d_{w}^{*}(x, y) \geq \frac{1}{k} d_{w^{+}}^{*}(T x, T y)=\frac{1}{k} d_{w}^{*}(T x, T y), \tag{517}
\end{equation*}
$$

which implies that T satisfies the Lipschitz condition with constant k.
Theorem 4 can be reformulated as follows. Since (cf. [9, Theorem 3.8(a)] and Eq. (9)), for $\lambda^{*}=d_{w}^{*}(x, y)$,

$$
\left(\lambda^{*}, \infty\right) \subset\left\{\lambda>0: w_{\lambda}(x, y)<1\right\} \subset\left\{\lambda>0: w_{\lambda}(x, y) \leq 1\right\} \subset\left[\lambda^{*}, \infty\right),
$$

we have $d_{w}^{*}(T x, T y) \leq k d_{w}^{*}(x, y)$ iff $w_{k \lambda}(T x, T y) \leq 1$ for all $\lambda>\lambda^{*}=d_{w}^{*}(x, y)$.
For a metric space (X, d) and the modular w from Eq. (1) on it, Theorem 4 givesso, $d(T x, T y) \leq k d(x, y)$.

As a corollary of Theorem 4, we find that

$$
\begin{equation*}
\text { if } w_{k \lambda}(T x, T y) \leq w_{\lambda}(x, y) \text { for all } \lambda>0 \text {, then } d_{w}^{*}(T x, T y) \leq k d_{w}^{*}(x, y) \text {; } \tag{23}
\end{equation*}
$$

in fact, it suffices to note only that if $\lambda>0$ is such that $w_{\lambda}(x, y) \leq 1$, then, by Eq. (6), 527 $w_{k \lambda+0}(T x, T y) \leq w_{k \lambda}(T x, T y) \leq w_{\lambda}(x, y) \leq 1$, and apply Theorem 4 .

Now we briefly comment on d_{w}-Lipschitz maps on X_{w}^{*}, where w is a general 529 modular on X and d_{w} is the metric from Eq. (8). Note that, given $c>0$, the function 530 $\bar{w}_{\lambda}(x, y)=\frac{1}{c} w_{c \lambda}(x, y)$ is also a modular on X and $d_{\bar{w}}=\frac{1}{c} d_{w}$ on $X_{\bar{w}}^{*}=X_{w}^{*}$. Following 531 the lines of the proof of Theorem 4, we get

Theorem 5. If w is a modular on X and $k>0$, given $T: X_{w}^{*} \rightarrow X_{w}^{*}$ and $x, y \in X_{w}^{*}$, 533 we have $d_{w}(T x, T y) \leq k d_{w}(x, y)$ iff $w_{k \lambda+0}(T x, T y) \leq k \lambda$ for all $\lambda>0$ such that 534 $w_{\lambda}(x, y) \leq \lambda$.

The following assertion is a corollary of Theorem 5:

$$
\text { if } w_{k \lambda}(T x, T y) \leq k w_{\lambda}(x, y) \text { for all } \lambda>0 \text {, then } d_{w}(T x, T y) \leq k d_{w}(x, y)
$$

Definition 7. Given a (convex) modular w on X, a map $T: X_{w}^{*} \rightarrow X_{w}^{*}$ is said to be 538 modular contractive (or a w-contraction) provided there exist numbers $0<k<1539$ and $\lambda_{0}>0$, possibly depending on k, such that

$$
\begin{equation*}
w_{k \lambda}(T x, T y) \leq w_{\lambda}(x, y) \text { for all } 0<\lambda \leq \lambda_{0} \text { and } x, y \in X_{w}^{*} . \tag{24}
\end{equation*}
$$

Author's Proof

Modular Contractions and Their Application

A few remarks are in order. First, by virtue of Eq. (1), for a metric space (X, d), 541 condition (24) is equivalent to the usual one: $d(T x, T y) \leq k d(x, y)$. Second, condition 542 (24) is a local one with respect to λ as compared to the assumption on the left 543 in Eq. (23), and the principal inequality in it may be of the form $\infty \leq \infty$. Third, if, 544 in addition, w is strict and if we set $\infty / \infty=1$, then Eq. (24) is a consequence of the 545 following: there exists a number $0<h<1$ such that

$$
\begin{equation*}
\limsup _{\lambda \rightarrow+0}\left(\sup _{x \neq y} \frac{w_{h \lambda}(T x, T y)}{w_{\lambda}(x, y)}\right) \leq 1 \tag{25}
\end{equation*}
$$

where the supremum is taken over all $x, y \in X_{w}^{*}$ such that $x \neq y$. In order to see this, we first note that the left-hand side in Eq. (25) is well defined in the sense that, by 548 virtue of (i_{s}) from Definition $1, w_{\lambda}(x, y) \neq 0$ for all $\lambda>0$ and $x \neq y$. Choose any $k 549$ such that $h<k<1$. It follows from Eq. (25) that

$$
\lim _{\mu \rightarrow+0} \sup _{\lambda \in(0, \mu]}\left(\sup _{x \neq y} \frac{w_{h \lambda}(T x, T y)}{w_{\lambda}(x, y)}\right) \leq 1<\frac{k}{h},
$$

and so, there exists a $\mu_{0}=\mu_{0}(k)>0$ such that

$$
\sup _{x \neq y} \frac{w_{h \lambda}(T x, T y)}{w_{\lambda}(x, y)}<\frac{k}{h} \quad \text { for all } \quad 0<\lambda \leq \mu_{0}
$$

whence

$$
w_{h \lambda}(T x, T y) \leq \frac{k}{h} w_{\lambda}(x, y), \quad 0<\lambda \leq \mu_{0}, \quad x, y \in X_{w}^{*} .
$$

Taking into account inequalities (7) and $(h / k) \lambda<\lambda$, we get

$$
w_{\lambda}(x, y) \leq \frac{(h / k) \lambda}{\lambda} w_{(h / k) \lambda}(x, y)=\frac{h}{k} w_{(h / k) \lambda}(x, y),
$$

which together with the previous inequality gives

$$
w_{h \lambda}(T x, T y) \leq w_{(h / k) \lambda}(x, y) \quad \text { for all } \quad 0<\lambda \leq \mu_{0} \quad \text { and } \quad x, y \in X_{w}^{*} .
$$

Setting $\lambda^{\prime}=(h / k) \lambda$ and $\lambda_{0}=(h / k) \mu_{0}$ and noting that $0<\lambda^{\prime} \leq \lambda_{0}$ and $h \lambda=k \lambda^{\prime}$, the 560 last inequality implies $w_{k \lambda^{\prime}}(T x, T y) \leq w_{\lambda^{\prime}}(x, y)$ for all $0<\lambda^{\prime} \leq \lambda_{0}$ and $x, y \in X_{w}^{*}$, 561 which is exactly Eq. (24).

The main result of this chapter is the following fixed-point theorem for modular 563 contractions in modular metric spaces X_{w}^{*}.

Theorem 6. Let w be a strict convex modular on X such that the modular space $X_{w}^{*} 565$ is w-complete and $T: X_{w}^{*} \rightarrow X_{w}^{*}$ be a w-contractive map such that

$$
\begin{equation*}
\text { for each } \lambda>0 \text { there exists an } x=x(\lambda) \in X_{w}^{*} \text { such that } w_{\lambda}(x, T x)<\infty . \tag{26}
\end{equation*}
$$

Author's Proof

Then T has a fixed point, i.e., $T x_{*}=x_{*}$ for some $x_{*} \in X_{w}^{*}$. If, in addition, the modular 567 w assumes only finite values on X_{w}^{*}, then condition (26) is redundant, the fixed point 568 x_{*} of T is unique and for each $\bar{x} \in X_{w}^{*}$ the sequence of iterates $\left\{T^{n} \bar{x}\right\}$ is modular 569 convergent to x_{*}. 570

Proof. Since w is convex, the following inequality follows by induction from 571 condition (iv) of Definition 1:

$$
\begin{equation*}
\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{N}\right) w_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{N}}\left(x_{1}, x_{N+1}\right) \leq \sum_{i=1}^{N} \lambda_{i} w_{\lambda_{i}}\left(x_{i}, x_{i+1}\right) \tag{27}
\end{equation*}
$$

where $N \in \mathbb{N}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in(0, \infty)$ and $x_{1}, x_{2}, \ldots, x_{N+1} \in X$. In the proof below ${ }_{573}$ we will need a variant of this inequality. Let $n, m \in \mathbb{N}, n>m, \lambda_{m}, \lambda_{m+1}, \ldots, \lambda_{n-1} \in 574$ $(0, \infty)$ and $x_{m}, x_{m+1}, \ldots, x_{n} \in X$. Setting $N=n-m, \lambda_{j}^{\prime}=\lambda_{j+m-1}$ for $j=1,2, \ldots, N, 575$ and $x_{j}^{\prime}=x_{j+m-1}$ for $j=1,2, \ldots, N+1$ and applying Eq. (27) to the primed lambda's 576 and x 's, we get

$$
\begin{equation*}
\left(\lambda_{m}+\lambda_{m+1}+\cdots+\lambda_{n-1}\right) w_{\lambda_{m}+\lambda_{m+1}+\cdots+\lambda_{n-1}}\left(x_{m}, x_{n}\right) \leq \sum_{i=m}^{n-1} \lambda_{i} w_{\lambda_{i}}\left(x_{i}, x_{i+1}\right) \tag{28}
\end{equation*}
$$

By the w-contractivity of T, there exist two numbers $0<k<1$ and $\lambda_{0}=\lambda_{0}(k)>578$ 0 such that condition (24) holds. Setting $\lambda_{1}=(1-k) \lambda_{0}$, the assumption (26) implies 579 the existence of an element $\bar{x}=\bar{x}\left(\lambda_{1}\right) \in X_{w}^{*}$ such that $C=w_{\lambda_{1}}(\bar{x}, T \bar{x})$ is finite. We 580 set $x_{1}=T \bar{x}$ and $x_{n}=T x_{n-1}$ for all integer $n \geq 2$, and so, $\left\{x_{n}\right\} \subset X_{w}^{*}$ and $x_{n}=T^{n} \bar{x}, 581$ where T^{n} designates the nth iterate of T. We are going to show that the sequence 582 $\left\{x_{n}\right\}$ is w-Cauchy. Since $k^{i} \lambda_{1}<\lambda_{1}<\lambda_{0}$ for all $i \in \mathbb{N}$, inequality (24) yields

$$
\begin{equation*}
w_{k^{i} \lambda_{1}}\left(x_{i}, x_{i+1}\right)=w_{k\left(k^{i-1} \lambda_{1}\right)}\left(T x_{i-1}, T x_{i}\right) \leq w_{k^{i-1} \lambda_{1}}\left(x_{i-1}, x_{i}\right), \tag{584}
\end{equation*}
$$

and it follows by induction that

$$
\begin{equation*}
w_{k^{i} \lambda_{1}}\left(x_{i}, x_{i+1}\right) \leq w_{\lambda_{1}}\left(\bar{x}, x_{1}\right)=C \quad \text { for all } \quad i \in \mathbb{N} \tag{29}
\end{equation*}
$$

Let integers n and m be such that $n>m$. We set

$$
\begin{equation*}
\lambda=\lambda(n, m)=k^{m} \lambda_{1}+k^{m+1} \lambda_{1}+\cdots+k^{n-1} \lambda_{1}=k^{m} \frac{1-k^{n-m}}{1-k} \lambda_{1} \tag{587}
\end{equation*}
$$

By virtue of Eq. (28) with $\lambda_{i}=k^{i} \lambda_{1}$ and Eq. (29), we find 588

$$
w_{\lambda}\left(x_{m}, x_{n}\right) \leq \sum_{i=m}^{n-1} \frac{k^{i} \lambda_{1}}{\lambda} w_{k^{i} \lambda_{1}}\left(x_{i}, x_{i+1}\right) \leq \frac{1}{\lambda}\left(\sum_{i=m}^{n-1} k^{i} \lambda_{1}\right) C=C, \quad n>m
$$

Author's Proof

Modular Contractions and Their Application

Taking into account that

$$
\lambda_{0}=\frac{\lambda_{1}}{1-k}>k^{m} \frac{1-k^{n-m}}{1-k} \lambda_{1}=\lambda(n, m)=\lambda \quad \text { for all } \quad n>m,
$$

and applying Eq. (7), we get

$$
w_{\lambda_{0}}\left(x_{m}, x_{n}\right) \leq \frac{\lambda}{\lambda_{0}} w_{\lambda}\left(x_{m}, x_{n}\right) \leq k^{m} \frac{1-k^{n-m}}{1-k} \cdot \frac{\lambda_{1}}{\lambda_{0}} C \leq k^{m} C \rightarrow 0 \text { as } m \rightarrow \infty .
$$

Thus, the sequence $\left\{x_{n}\right\}$ is modular Cauchy, and so, by the w-completeness of X_{w}^{*}, 594 there exists an $x_{*} \in X_{w}^{*}$ such that

$$
w_{\lambda_{0}}\left(x_{n}, x_{*}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Since w is strict, by Theorem 1(b), the modular limit x_{*} of the sequence $\left\{x_{n}\right\}$ is 597 determined uniquely.

Let us show that x_{*} is a fixed point of T, i.e., $T x_{*}=x_{*}$. In fact, by property (iii) 599 of Definition 1 and Eq. (24), we have (note that $T x_{n}=x_{n+1}$)

$$
\begin{aligned}
w_{(k+1) \lambda_{0}}\left(T x_{*}, x_{*}\right) & \leq w_{k \lambda_{0}}\left(T x_{*}, T x_{n}\right)+w_{\lambda_{0}}\left(x_{*}, x_{n+1}\right) \leq \\
& \leq w_{\lambda_{0}}\left(x_{*}, x_{n}\right)+w_{\lambda_{0}}\left(x_{*}, x_{n+1}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

and so, $w_{(k+1) \lambda_{0}}\left(T x_{*}, x_{*}\right)=0$. By the strictness of $w, T x_{*}=x_{*}$.
Finally, assuming w to be finite valued on X_{w}^{*}, we show that the fixed point of 602 T is unique. Suppose $x_{*}, y_{*} \in X_{w}^{*}$ are such that $T x_{*}=x_{*}$ and $T y_{*}=y_{*}$. Then the 603 convexity of w and inequalities $k \lambda_{0}<\lambda_{0}$ and Eq. (24) imply

$$
w_{\lambda_{0}}\left(x_{*}, y_{*}\right) \leq \frac{k \lambda_{0}}{\lambda_{0}} w_{k \lambda_{0}}\left(x_{*}, y_{*}\right)=k w_{k \lambda_{0}}\left(T x_{*}, T y_{*}\right) \leq k w_{\lambda_{0}}\left(x_{*}, y_{*}\right),
$$

and since $w_{\lambda_{0}}\left(x_{*}, y_{*}\right)$ is finite, $(1-k) w_{\lambda_{0}}\left(x_{*}, y_{*}\right) \leq 0$. Thus, $w_{\lambda_{0}}\left(x_{*}, y_{*}\right)=0$, and by the strictness of w, we get $x_{*}=y_{*}$. The last assertion is clear.

It is to be noted that assumption (26) in Theorem 6 is (probably) too strong, and 606 what we actually need for the iterative procedure to work in the proof of Theorem 6607 is only the existence of an $\bar{x} \in X_{w}^{*}$ such that $w_{(1-k) \lambda_{0}}(\bar{x}, T \bar{x})<\infty$, where λ_{0} is the 608 constant from Eq. (24).

A standard corollary of Theorem 6 is as follows: if w is finite valued on X_{w}^{*} and 610 an nth iterate T^{n} of $T: X_{w}^{*} \rightarrow X_{w}^{*}$ satisfies the assumptions of Theorem 6, then $T 611$ has a unique fixed point. In fact, by Theorem 6 applied to $T^{n}, T^{n} x_{*}=x_{*}$ for some 612 $x_{*} \in X_{w}^{*}$. Since $T^{n}\left(T x_{*}\right)=T\left(T^{n} x_{*}\right)=T x_{*}$, the point $T x_{*}$ is also a fixed point of 613 T^{n}, and so, the uniqueness of a fixed point of T^{n} implies $T x_{*}=x_{*}$. We infer that 614 x_{*} is a unique fixed point of T : if $y_{*} \in X_{w}^{*}$ and $T y_{*}=y_{*}$, then $T^{n} y_{*}=T^{n-1}\left(T y_{*}\right)=615$

Author's Proof

$T^{n-1} y_{*}=\cdots=y_{*}$, i.e., y_{*} is yet another fixed point of T^{n}, and again the uniqueness 616 of a fixed point of T^{n} yields $y_{*}=x_{*}$.

Another corollary of Theorem 6 concerns general (nonconvex) modulars w on $X 618$ (cf. Theorem 7). Taking into account Theorem 5 and its corollary, we have 619

Definition 8. Given a modular w on X, a map $T: X_{w}^{*} \rightarrow X_{w}^{*}$ is said to be strongly 620 modular contractive (or a strong w-contraction) if there exist numbers $0<k<1621$ and $\lambda_{0}=\lambda_{0}(k)>0$ such that

$$
\begin{equation*}
w_{k \lambda}(T x, T y) \leq k w_{\lambda}(x, y) \text { for all } 0<\lambda \leq \lambda_{0} \text { and } x, y \in X_{w}^{*} . \tag{30}
\end{equation*}
$$

Clearly, condition (30) implies condition (24).
Theorem 7. Let w be a strict modular on X such that X_{w}^{*} is w-complete and $T: 624$ $X_{w}^{*} \rightarrow X_{w}^{*}$ be a strongly w-contractive map such that condition (26) holds. Then 625 T admits a fixed point. If, in addition, w is finite valued on X_{w}^{*}, then Eq. (26) is 626 redundant, the fixed point x_{*} of T is unique and for each $\bar{x} \in X_{w}^{*}$ the sequence of 627 iterates $\left\{T^{n} \bar{x}\right\}$ is modular convergent to x_{*}.
Proof. We set $v_{\lambda}(x, y)=w_{\lambda}(x, y) / \lambda$ for all $\lambda>0$ and $x, y \in X$. It was observed in Sect. 2 that v is a convex modular on X. It is also clear that v is strict and the modular space $X_{v}^{*}=X_{w}^{*}$ is v-complete. Moreover, condition (30) for w implies condition (24) for v, and Eq. (26) is satisfied with w replaced by v. By Theorem 6, applied to X and v, there exists an $x_{*} \in X_{v}^{*}=X_{w}^{*}$ such that $T x_{*}=x_{*}$. The remaining assertions are obvious.

6 An Application of the Fixed-Point Theorem

In this section we present a rather standard application of Theorem 6 to the 630 Carathéodory-type ordinary differential equations. The key interest will be in 631 obtaining the inequality (24).

Given a convex φ-function φ on \mathbb{R}^{+}satisfying the Orlicz condition at infinity, 633 we denote by $\mathrm{L}^{\varphi}[a, b]$ the Orlicz space of real-valued functions on $[a, b]$ (cf. [22, 634 Chap.II]), i.e., a function $z:[a, b] \rightarrow \mathbb{R}$ (or an almost everywhere finite-valued 635 function z on $[a, b]$) belongs to $\mathrm{L}^{\varphi}[a, b]$ provided z is measurable and $\rho(z / \lambda)<\infty{ }_{636}$ for some number $\lambda=\lambda(z)>0$, where $\rho(z)=\int_{a}^{b} \varphi(|z(t)|) d t$ is the classical Orlicz ${ }_{637}$ modular.

Suppose $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is a (Carathéodory-type) function, which satisfies the 639 following two conditions:
(C.1) For each $x \in \mathbb{R}$ the function $f(\cdot, x)=[t \mapsto f(t, x)]$ is measurable on $[a, b]$ and 641 there exists a point $y_{0} \in \mathbb{R}$ such that $f\left(\cdot, y_{0}\right) \in \mathrm{L}^{\varphi}[a, b]$.
(C.2) There exists a constant $L>0$ such that $|f(t, x)-f(t, y)| \leq L|x-y|$ for almost 643 all $t \in[a, b]$ and all $x, y \in \mathbb{R}$.

Author's Proof

Modular Contractions and Their Application

Given $x_{0} \in \mathbb{R}$, we let X_{w}^{*} be the modular space Eq. (21) generated by the modular 645 w from Eq. (14) under the assumptions from Example 4.4.

Consider the following integral operator:

$$
\begin{equation*}
(T x)(t)=x_{0}+\int_{a}^{t} f(s, x(s)) d s, \quad x \in X_{w}^{*}, \quad t \in[a, b] . \tag{31}
\end{equation*}
$$

Theorem 8. Under the assumptions (C.1) and (C.2), the operator T maps X_{w}^{*} into 648 itself, and the following inequality holds in $[0, \infty]$:

$$
\begin{equation*}
w_{L(b-a) \lambda}(T x, T y) \leq w_{\lambda}(x, y) \quad \text { for all } \lambda>0 \text { and } x, y \in X_{w}^{*} . \tag{32}
\end{equation*}
$$

Proof. We will apply the Jensen integral inequality with the convex φ-function $\varphi 650$ (e.g. [24, X.5.6]) several times:

$$
\begin{equation*}
\varphi\left(\frac{1}{b-a} \int_{a}^{b}|x(t)| d t\right) \leq \frac{1}{b-a} \int_{a}^{b} \varphi(|x(t)|) d t, \quad x \in \mathrm{~L}^{1}[a, b], \tag{33}
\end{equation*}
$$

where the intergral in the right-hand side is well defined in the sense that it takes 652 values in $[0, \infty]$.

1. First, we show that T is well defined on X_{w}^{*}. Let $x \in X_{w}^{*}$, i.e., $x \in \mathrm{GV}_{\varphi}[a, b]$ and 654 $x(a)=x_{0}$. Since (cf. Example 4.4) $x \in \mathrm{AC}[a, b]$, by virtue of (C.1) and (C.2), the 655 composed function $t \mapsto f(t, x(t))$ is measurable on $[a, b]$. Let us prove that this 656 function belongs to $\mathrm{L}^{1}[a, b]$. By Lebesgue's theorem, $x(t)=x_{0}+\int_{a}^{t} x^{\prime}(s) d s$ for 657 all $t \in[a, b]$, and so, (C.2) yields

$$
\begin{align*}
|f(t, x(t))| & \leq\left|f(t, x(t))-f\left(t, y_{0}\right)\right|+\left|f\left(t, y_{0}\right)\right| \\
& \leq L\left|x(t)-y_{0}\right|+\left|f\left(t, y_{0}\right)\right| \\
& \leq L \int_{a}^{b}\left|x^{\prime}(s)\right| d s+L\left|x_{0}-y_{0}\right|+\left|f\left(t, y_{0}\right)\right| \tag{34}
\end{align*}
$$

for almost all $t \in[a, b]$. Since $x \in X_{w}^{*}$, and so, $x \in \mathrm{GV}_{\varphi}[a, b]$, there exists a constant 659 $\lambda_{1}=\lambda_{1}(x)>0$ such that (cf. Eq. (20))

$$
C_{1} \equiv w_{\lambda_{1}}\left(x, x_{0}\right)=\int_{a}^{b} \varphi\left(\frac{\left|x^{\prime}(s)\right|}{\lambda_{1}}\right) d s<\infty
$$

and since, by $(\mathrm{C} .1), f\left(\cdot, y_{0}\right) \in \mathrm{L}^{\varphi}[a, b]$, there exists a constant $\lambda_{2}=\lambda_{2}\left(f\left(\cdot, y_{0}\right)\right)>0662$ such that

$$
C_{2} \equiv \rho\left(f\left(\cdot, y_{0}\right) / \lambda_{2}\right)=\int_{a}^{b} \varphi\left(\frac{\left|f\left(t, y_{0}\right)\right|}{\lambda_{2}}\right) d t<\infty .
$$

Author's Proof

Setting $\lambda_{0}=L \lambda_{1}(b-a)+1+\lambda_{2}$ and noting that

$$
\frac{L \lambda_{1}(b-a)}{\lambda_{0}}+\frac{1}{\lambda_{0}}+\frac{\lambda_{2}}{\lambda_{0}}=1
$$

by the convexity of φ, we find (see Eq. (34))

$$
\begin{gathered}
\varphi\left(\frac{1}{\lambda_{0}}\left[L \int_{a}^{b}\left|x^{\prime}(s)\right| d s+L\left|x_{0}-y_{0}\right|+\left|f\left(t, y_{0}\right)\right|\right]\right) \\
\leq \frac{L \lambda_{1}(b-a)}{\lambda_{0}} \varphi\left(\frac{1}{b-a} \int_{a}^{b} \frac{\left|x^{\prime}(s)\right|}{\lambda_{1}} d s\right)+\frac{1}{\lambda_{0}} \varphi\left(L\left|x_{0}-y_{0}\right|\right)+\frac{\lambda_{2}}{\lambda_{0}} \varphi\left(\frac{\left|f\left(\cdot, y_{0}\right)\right|}{\lambda_{2}}\right),
\end{gathered}
$$

and so, Eq. (34) and Jensen's integral inequality yield

$$
\begin{equation*}
\int_{a}^{b} \varphi\left(\frac{|f(t, x(t))|}{\lambda_{0}}\right) d t \leq \frac{L \lambda_{1}(b-a)}{\lambda_{0}} C_{1}+\frac{b-a}{\lambda_{0}} \varphi\left(L\left|x_{0}-y_{0}\right|\right)+\frac{\lambda_{2}}{\lambda_{0}} C_{2} \equiv C_{0}<\infty . \tag{35}
\end{equation*}
$$

Now, it follows from Eq. (33) that

$$
\varphi\left(\frac{1}{\lambda_{0}(b-a)} \int_{a}^{b}|f(t, x(t))| d t\right) \leq \frac{1}{b-a} \int_{a}^{b} \varphi\left(\frac{|f(t, x(t))|}{\lambda_{0}}\right) d t \leq \frac{C_{0}}{b-a}
$$

implying

$$
\begin{equation*}
\int_{a}^{b}|f(t, x(t))| d t \leq \lambda_{0}(b-a) \varphi^{-1}\left(\frac{C_{0}}{b-a}\right)<\infty . \tag{672}
\end{equation*}
$$

Thus, $[t \mapsto f(t, x(t))] \in \mathrm{L}^{1}[a, b]$. As a consequence, the operator T is well defined 673 on X_{w}^{*}, and, by Eq. (31), $T x \in \mathrm{AC}[a, b]$ for all $x \in X_{w}^{*}$, which implies that the 674 almost everywhere derivative $(T x)^{\prime}$ belongs to $\mathrm{L}^{1}[a, b]$ and satisfies

$$
\begin{equation*}
(T x)^{\prime}(t)=f(t, x(t)) \quad \text { for almost all } \quad t \in[a, b] \tag{36}
\end{equation*}
$$

2. It is clear from Eq. (31) that, given $x \in X_{w}^{*},(T x)(a)=x_{0}$, and so, $T x \in X=\{y: 676$ $\left.[a, b] \rightarrow \mathbb{R} \mid y(a)=x_{0}\right\}$. Now we show that $T x \in X_{w}^{*}$. In fact, by virtue of Eqs. (20), 677 (36) and (35), we have

$$
\begin{equation*}
w_{\lambda_{0}}\left(T x, x_{0}\right)=\int_{a}^{b} \varphi\left(\frac{\left|(T x)^{\prime}(t)\right|}{\lambda_{0}}\right) d t=\int_{a}^{b} \varphi\left(\frac{|f(t, x(t))|}{\lambda_{0}}\right) d t \leq C_{0} \tag{37}
\end{equation*}
$$

and so, T maps X_{w}^{*} into itself.
3. In order to obtain inequality (32), let $\lambda>0$ and $x, y \in X_{w}^{*}$. Taking into account 680 Eqs. (19), (20) and (36), we find

Author's Proof

Modular Contractions and Their Application

$$
\begin{align*}
w_{L(b-a) \lambda}(T x, T y) & =w_{L(b-a) \lambda}\left(T x-T y, x_{0}\right)=\int_{a}^{b} \varphi\left(\frac{\left|(T x-T y)^{\prime}(t)\right|}{L(b-a) \lambda}\right) d t \\
& =\int_{a}^{b} \varphi\left(\frac{|f(t, x(t))-f(t, y(t))|}{L(b-a) \lambda}\right) d t \tag{38}
\end{align*}
$$

Applying (C.2) and Lebesgue's theorem, we get, for almost all $t \in[a, b]$ (note 682 that $\left.x(a)=y(a)=x_{0}\right)$,

$$
\begin{equation*}
|f(t, x(t))-f(t, y(t))| \leq L|x(t)-y(t)| \leq L \int_{a}^{b}\left|(x-y)^{\prime}(s)\right| d s, \tag{684}
\end{equation*}
$$

and so, by Eq. (33), the monotonicity of φ, Eqs. (20) and (19),

$$
\begin{aligned}
\varphi\left(\frac{|f(t, x(t))-f(t, y(t))|}{L(b-a) \lambda}\right) & \leq \varphi\left(\frac{1}{b-a} \int_{a}^{b} \frac{\left|(x-y)^{\prime}(s)\right|}{\lambda} d s\right) \\
& \leq \frac{1}{b-a} \int_{a}^{b} \varphi\left(\frac{\left|(x-y)^{\prime}(s)\right|}{\lambda}\right) d s \\
& =\frac{1}{b-a} w_{\lambda}(x, y) .
\end{aligned}
$$

Now, inequality (32) follows from Eq. (38).

As a corollary of Theorems 6 and 8, we have
Theorem 9. Under the conditions (C.1) and (C.2), given $x_{0} \in \mathbb{R}$, the initial value 688 problem

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t)) \text { for almost all } t \in\left[a, b_{1}\right] \text { and } x(a)=x_{0} \tag{39}
\end{equation*}
$$

admits a solution $x \in \operatorname{GV}_{\varphi}\left[a, b_{1}\right]$ with $a<b_{1} \in \mathbb{R}$ such that $L\left(b_{1}-a\right)<1$.
Proof. We know from Example 4.4 that w is a strict convex modular on the set 691 $X=\left\{x:\left[a, b_{1}\right] \rightarrow \mathbb{R} \mid x(a)=x_{0}\right\}$ and that the modular space $X_{w}^{*}=\mathrm{GV}_{\varphi}\left[a, b_{1}\right] \cap X$ is 692 w-complete. By Theorem 8, the operator T from Eq. (31) maps X_{w}^{*} into itself and is ${ }^{693}$ w-contractive. Since the inequality $w_{k \lambda}(T x, T y) \leq w_{\lambda}(x, y)$ with $0<k=L\left(b_{1}-a\right)<694$ 1 holds for all $\lambda>0$, in the iterative procedure in the proof of Theorem 6, it suffices 695 to choose any $\bar{x} \in X_{w}^{*}$ such that $w_{\bar{\lambda}}(\bar{x}, T \bar{x})<\infty$ for some $\bar{\lambda}>0$. Since $\left(x_{0}\right)^{\prime}=0$, by ${ }_{696}$ virtue of Eqs. (37) and (35), we find

$$
w_{\lambda_{0}}\left(T x_{0}, x_{0}\right) \leq C_{0}=\frac{b_{1}-a}{\lambda_{0}} \varphi\left(L\left|x_{0}-y_{0}\right|\right)+\frac{\lambda_{2}}{\lambda_{0}} C_{2}<\infty
$$

Author's Proof

(the constants λ_{2} and C_{2} being evaluated on the interval $\left[a, b_{1}\right]$) with $\bar{\lambda}=\lambda_{0}=$ $L\left(b_{1}-a\right)+1+\lambda_{2}$, and so, we may set $\bar{x}=x_{0}$. Now, by Theorem 6 , the integral operator T admits a fixed point: the equality $T x=x$ on $\left[a, b_{1}\right]$ for some $x \in X_{w}^{*}$ is, by virtue of Eqs. (31) and (36), equivalent to Eq. (39).

7 Concluding Remarks

7.1. It is not our intention in this chapter to study the properties of solutions to 700 Eq. (39) in detail: after Theorem 9 on local solutions of Eq. (39) has been established, the questions of uniqueness, extensions, etc. of solutions can be 702 studied following the same pattern as in, e.g., [13]. Theorems 8 and 9 are valid 703 (with the same proofs) for mappings $x:[a, b] \rightarrow M$ and $f:[a, b] \times M \rightarrow M$ 704 satisfying (C.1) and (C.2), where ($M,|\cdot|$) is a reflexive Banach space; the 705 details concerning the equality (20) in this case can be found in [2-5].
7.2. In the theory of the Carathéodory differential equations (39) (cf. [13]) the usual 707 assumption on the right-hand side is of the form $|f(t, x)| \leq g(t)$ for almost all 708 $t \in[a, b]$ and all $x \in \mathbb{R}$, where $g \in \mathrm{~L}^{1}[a, b]$, and the resulting solution belongs 709 to AC $\left[a, b_{1}\right]$ for some $a<b_{1}<b$. However, it is known from [19, II.8] that 710 $\mathrm{L}^{1}[a, b]=\bigcup_{\varphi \in \mathscr{N}} \mathrm{L}^{\varphi}[a, b]$, where \mathscr{N} is the set of all φ-functions satisfying 711 the Orlicz condition at infinity. Also, it follows from [2, Corollary 11] that 712 $\mathrm{AC}[a, b]=\bigcup_{\varphi \in \mathscr{N}} \mathrm{GV}_{\varphi}[a, b]$. Thus, Theorem 9 reflects the regularity property 713 of solutions of Eq. (39). Note that, in contrast with functions from $\mathrm{AC}[a, b], 714$ functions x from $\mathrm{GV}_{\varphi}[a, b]$ have the "qualified" modulus of continuity [5, 715 Lemma 3.9(a)]: $|x(t)-x(s)| \leq C_{x} \cdot \omega_{\varphi}(|t-s|)$ for all $t, s \in[a, b]$, where $C_{x}=716$ $d_{w}^{*}(x, 0)$ and $\omega_{\varphi}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a subadditive function given by $\omega_{\varphi}(u)=717$ $u \varphi^{-1}(1 / u)$ for $u \geqslant 0$ and $\omega_{\varphi}(+0)=\omega_{\varphi}(0)=0$. 718
7.3. Theorem 8 does not reflect all the flavour of Theorem 6, namely, the locality of 719 condition (24) and the modular convergence of the successive approximations 720 of the fixed points, and so, an appropriate example is yet to be found; however, 721 one may try to adjust Example 2.15 from [16] (note that Proposition 2.14 from 722 [16] is similar to our assertion (23) with $k=1$). $\quad{ }_{723}$

Acknowledgements The individual research project No. 10-01-0071 "Metric modulars and their 724 topological, geometric and econometric properties with applications" was supported by the Pro- 725 gram "Scientific Foundation of the National Research University Higher School of Economics". 726 The work on the project has been carried out at Laboratory of Algorithms and Technologies for 727 Networks Analysis, National Research University Higher School of Economics, and also partly 728 supported by Ministry of Education and Science of Russian Federation, Grant No. 11.G34.31.0057. 729 The author is grateful to Boris I. Goldengorin and Panos M. Pardalos for stimulating discussions 730 on the results of this chapter.

Author's Proof

Modular Contractions and Their Application
References 732

1. Ait Taleb, A., Hanebaly, E.: A fixed point theorem and its application to integral equations 733
in modular function spaces. Proc. Amer. Math. Soc. 128(2), 419-426 (2000) MR1487352 734
(99j:47082)735
2. Chistyakov, V.V.: Mappings of bounded variation with values in a metric space: generaliza- 736
tions. Pontryagin Conference, Nonsmooth Analysis and Optimization, vol. 2. Moscow, New 737
York (1998) J. Math. Sci. 100(6), 2700-2715 (2000) MR1778990 (2001k:26012) 738
3. Chistyakov, V.V.: Generalized variation of mappings with applications to composition opera- 739
tors and multifunctions. Positivity 5(4), 323-358 (2001) MR1856892 (2002k:47110) 740
4. Chistyakov, V.V.: On multi-valued mappings of finite generalized variation. Mat. Zametki 741
71(4), 611-632 (2002) (in Russian) English translation: Math. Notes 71(3-4), 556-575 (2002) 742
MR1913590 (2003m:47093) 743
5. Chistyakov, V.V.: Selections of bounded variation. J. Appl. Anal. 10(1), 1-82 (2004) 744 MR2081486 (2005i:26025) 745
6. Chistyakov, V.V.: Lipschitzian Nemytskii operators in the cones of mappings of bounded 746 Wiener φ-variation. Folia Math. 11(1), 15-39 (2004) MR2117294 (2005k:47142) 747
7. Chistyakov, V.V.: Metric modulars and their application. Dokl. Akad. Nauk 406(2), 165-168 748
(2006) (in Russian) English translation: Dokl. Math. 73(1), 32-35 (2006) MR2258511 749
(2007i:46025) 750
8. Chistyakov, V.V.: Modular metric spaces generated by F-modulars. Folia Math. 15(1), 3-24 751
(2008) MR2646913 (2011j:54030) 752
9. Chistyakov, V.V.: Modular metric spaces, I: Basic concepts. Nonlinear Anal. 72(1), 1-14 753 (2010) MR2574913 (2011b:46016) 754
10. Chistyakov, V.V.: Modular metric spaces, II: Application to superposition operators. Nonlinear 755 Anal. 72(1), 15-30 (2010) MR2574914 (2011b:46017) 756
11. Cybertowicz, Z., Matuszewska, W.: Functions of bounded generalized variations. Comment. 757
Math. Prace Mat. 20, 29-52 (1977) MR0463381 (57 \#3333) 758
12. De Blasi, F.S.: On the differentiability of multifunctions. Pacific J. Math. 66(1), 67-81 (1976) 759
MR0445534 (56 \#3874) 760
13. Filippov, A.F.: Differential equations with discontinuous right-hand sides. Math. and Appl. 761
vol. 18. Kluwer Acad. Publ. Group, Dordrecht (1988) MR1028776 (90i:34002) 762
14. Goebel, K., Kirk, W.A.: Topics in metric fixed point theory. Cambridge Studies in Advanced 763
Math., vol. 28. Cambridge University Press, Cambridge (1990) MR1074005 (92c:47070) 764
15. Hadžić, O., Pap, E.: Fixed point theory in probabilistic metric spaces. Math. Appl., vol. 536. 765 Kluwer Acad. Publ., Dordrecht (2001) MR1896451 (2003a:47113) 766
16. Khamsi, M.A., Kozłowski, W.M., Reich, S.: Fixed point theory in modular function spaces. 767
Nonlinear Anal. 14(11), 935-953 (1990) MR1058415 (91d:47042) 768
17. Khamsi, M.A., Kozłowski, W.M., Shu Tao, C.: Some geometrical properties and fixed 769
point theorems in Orlicz spaces. J. Math. Anal. Appl. 155(2), 393-412 (1991) MR1097290 770
(92b:47092) 771
18. Kirk, W.A., Sims, B. (eds.): Handbook of Metric Fixed Point Theory. Kluwer Acad. Publ. 772
Dordrecht (2001) MR1904271 (2003b:47002) 773
19. Krasnosel'skiĭ, M.A., Rutickiĭ, Ja. B.: Convex Functions and Orlicz Spaces. Fizmatgiz, 774
Moscow (1958) (in Russian) English translation: P. Noordhoff Ltd., Groningen, The Nether- 775
lands (1961) MR0126722 (23 \#A4016) 776
20. Maligranda, L.: Orlicz spaces and interpolation. Seminars in Math., vol. 5. Univ. Estadual de 777
Campinas, Campinas SP, Brasil (1989) MR2264389 (2007e:46025) 778
21. Medvedev, Y.T.: Generalization of a theorem of F. Riesz. Uspekhi Mat. Nauk (N.S.) 8(6), 779
115-118 (1953) (in Russian) MR0061655 (15,860c) 780
22. Musielak, J.: Orlicz spaces and modular spaces. In: Lecture Notes in Math., vol. 1,034. 781
Springer, Berlin (1983) MR0724434 (85m:46028) 782

Author's Proof

23. Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen, Tokyo (1950) MR0038565 783
(12,420a) 784
24. Natanson, I.P.: Theory of Functions of a Real Variable, 3rd edn. Nauka, Moscow (1974) (in 785
Russian) MR0354979 (50 \#7456) 786
25. Orlicz, W.: Collected Papers, Part I, II. PWN—Polish Scientific Publishers, Warsaw (1988) 787
MR0963250 (89i:01141) 788
26. Rådström, H.: An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3, 789165-169 (1952) MR0045938 (13,659c) 79027. Rao, M.M., Ren, Z.D.: Applications of orlicz spaces. Monogr. Textbooks Pure Appl. Math., 791vol. 250. Dekker, New York (2002) MR1890178 (2003e:46041)792

Author's Proof

AUTHOR QUERIES

AQ1. Repeated operators like $(\leq,=)$ have been deleted [e.g., $(5,16,34,38)$] according to SL2 Springer style. Please confirm if it is correc
AQ 2 . Please check if "modular complete modular metric spaces" should be changed to "complete modular metric spaces
AQ3. Please provide section heading for Sections 4.1-4.6 if required
AQ4. Section 4.4 has been changed to Example 4.4 for consistency. rrase check and confirm.
AQ5. Please confirm hether we can remove section prefix from the list and change it into normal list.

[^0]: V. V. Chistyakov (\boxtimes)

 Department of Applied Mathematics and Computer Science and Laboratory of Algorithms and Technologies for Networks Analysis, National Research University Higher School of Economics, Bol'shaya Pechërskaya Street 25/12, Nizhny Novgorod, Russian Federation, 603155, Russia e-mail: vchistyakov@hse.ru; czeslaw@mail.ru

