• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Experimental investigation of Ti-Al-V alloy superplastic behavior

P. 1239-1245.

The purpose of this study is to find out the characteristics of hot forming of Ti-6Al-4V titanium alloy in order to determine the conditions of its superplastic behavior. The experiments were performed in two stages: the stepped tensile-tests series (temperature range 700 – 925 °С) and the constant strain rate tensile-test series (temperature range 775 – 925 °С). By the results of stepped tensile tests the constitutive equations which describe relationship between stress and strain rate for each temperature were constructed. On the base of obtained data, the temperature and strain-rate ranges which ensure the realization of superplasticity at forming of Ti-6Al-4V alloy as well as optimal strain rates which corresponds to the maximum value of strain rate sensitivity exponent were determined. In was shown that at low temperatures (700 – 775C) the Ti-6Al-4V alloy shows all signs of superplasticity, however at these temperatures the optimal strain rates are too slow for industrial technological procedures. The dependence between optimum strain rate and reciprocal temperature appears to be well fitted by exponential low. At the second stage of the experimental research, the tensile-tests with a constant, optimum for each temperature strain-rate were carried in order, to estimate the real initial flow stress and the character of strain hardening of the material during the deformation with optimum strain rate. In was found that flow stress values obtained by stepped tensile tests matches the values form constant-strain-rate tests with effective strain value equal to 0,2 and the strain hardening during the deformation with optimal strain rates is significant.