Book chapter
Двойная случайность в стохастическом моделировании
In book

In the first part of the paper we consider a "random flight" process in \(R^d\) and obtain the weak limits under different transformations of the Poissonian switching times. In the second part we construct diffusion approximations for this process and investigate their accuracy. To prove the weak convergence result we use the approach of Stroock and Varadhan (1979). We consider more general model which may be called "random walk over ellipsoids in \(R^d\)". For this model we establish the Edgeworth type expansion. The main tool in this part is the parametrix method (Konakov (2012), Konakov and Mammen (2009)).
We discuss conditions for unique ergodicity of a collective random walk on a continuous circle. Individual particles in this collective motion perform independent (and different in general) random walks conditioned by the assumption that the particles cannot overrun each other. Additionally to sufficient conditions for the unique ergodicity we discover a new and unexpected way for its violation due to excessively large local jumps. Necessary and sufficient conditions for the unique ergodicity of the deterministic version of this system are obtained as well. Technically our approach is based on the interlacing property of the spin function which describes states of pairs of particles in coupled processes under study.
The article considers the procedure of constructing COGARCH volatility models with continuous time based on the Levy processes. The article describes the procedure of constructing the model in the general case and in the case of compound Poisson process.