Book chapter
Topological recursion and Givental’s formalism: Spectral curves for Gromov-Witten theories
We describe a way of producing local spectral curves for arbitrary
semisimple cohomological field theories (and Gromov-Witten theories in par-
ticular) and global spectral curves for semisimple cohomological field theories
satisfying certain conditions. By this we mean that applying the topological
recursion procedure on the spectral curve reproduces the total potential of the
corresponding cohomological field theory.
In book

This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwitz numbers and Grothendieck's dessins d'enfants, Gromov-Witten invariants, the A-polynomials and colored polynomial invariants of knots, WKB analysis, and quantization of Hitchin moduli spaces. In addition to establishing these topics, the volume includes survey papers on the most recent key accomplishments: discovery of the unexpected relation to semi-simple cohomological field theories and a solution to the remodeling conjecture. It also provides a glimpse into the future research direction; for example, connections with the Airy structures, modular functors, Hurwitz-Frobenius manifolds, and ELSV-type formulas.
Hurwitz spaces parameterizing covers of the Riemann sphere can be equipped with a Frobenius structure. In this review, we recall the con- struction of such Hurwitz Frobenius manifolds as well as the correspondence between semisimple Frobenius manifolds and the topological recursion formal- ism. We then apply this correspondence to Hurwitz Frobenius manifolds by explaining that the corresponding primary invariants can be obtained as pe- riods of multidifferentials globally defined on a compact Riemann surface by topological recursion. Finally, we use this construction to reply to the follow- ing question in a large class of cases: given a compact Riemann surface, what does the topological recursion compute?
In this paper we give a new proof of the ELSV formula. First, we refine an argument of Okounkov and Pandharipande in order to prove (quasi-)polynomiality of Hurwitz numbers without using the ELSV formula (the only way to do that before used the ELSV formula). Then, using this polynomiality we give a new proof of the Bouchard–Mariño conjecture. After that, using the correspondence between the Givental group action and the topological recursion coming from matrix models, we prove the equivalence of the Bouchard–Mariño conjecture and the ELSV formula (it is a refinement of an argument by Eynard).
In this paper, we present an example of a derivation of an ELSV-type formula using the methods of topological recursion. Namely, for orbifold Hurwitz numbers we give a new proof of the spectral curve topological recursion, in the sense of Chekhov, Eynard and Orantin, where the main new step compared to the existing proofs is a direct combinatorial proof of their quasi-polynomiality. Spectral curve topological recursion leads to a formula for the orbifold Hurwitz numbers in terms of the intersection theory of the moduli space of curves, which, in this case, appears to coincide with a special case of the Johnson–Pandharipande–Tseng formula.
We compute the number of coverings of CP1∖{0,1,∞} with a given monodromy type over ∞ and given numbers of preimages of 0 and 1. We show that the generating function for these numbers enjoys several remarkable integrability properties: it obeys the Virasoro constraints, an evolution equation, the KP (Kadomtsev–Petviashvili) hierarchy and satisfies a topological recursion in the sense of Eynard–Orantin.