• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Multimodal Clustering for Community Detection

P. 59-96.
Ignatov D. I., Semenov A., Комиссарова Д. В., Gnatyshak D. V.

Multimodal clustering is an unsupervised technique for mining interesting patterns in n-ary relations or n-mode networks. Among different types of such generalised patterns one can find biclusters and formal concepts (maximal bicliques) for two-mode case, triclusters and triconcepts for three-mode case, closed n-sets for n-mode case, etc. Object-attribute biclustering (OA-biclustering) for mining large binary datatables (formal contexts or two-mode networks) arose by the end of the last decade due to intractability of computation problems related to formal concepts; this type of patterns was proposed as a meaningful and scalable approximation of formal concepts. In this paper, our aim is to present recent advance in OA-biclustering and its extensions to mining multi-mode communities in SNA setting. We also discuss connection between clustering coefficients known in SNA community for one-mode and two-mode networks and OA-bicluster density, the main quality measure of an OA-bicluster. Our experiments with two-, three-, and four-mode large real-world networks show that this type of patterns is suitable for community detection in multi-mode cases within reasonable time even though the number of corresponding n-cliques is still unknown due to computation difficulties. An interpretation of OA-biclusters for one-mode networks is provided as well.

In book

Edited by: R. Missaoui, S. Kuznetsov, S. Obiedkov. Springer, 2017.