• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Ideal type model and an associated method for relational fuzzy clustering

P. 1-6.
Nascimento S., Mirkin B.

The ideal type model by Mirkin and Satarov (1990) expresses data points as convex combinations of some `ideal type' points. However, this model cannot prevent the ideal type points being far away from the observations and, in fact, requires that. Archetypal analysis by Cutler and Breiman (1994) and proportional membership fuzzy clustering by Nascimento et al. (2003) propose different ways of avoiding this entrapment. We propose one more way out - by assuming the ideal types being mutually orthogonal and transforming the model by multiplying it over its transpose. The obtained additive fuzzy clustering model for relational data is akin to that more recently analysed by Mirkin and Nascimento (2012) in a different context. The one-by-one clustering approach to the ideal type model is reformulated here as that naturally leading to a spectral clustering algorithm for finding fuzzy membership vectors. The algorithm is proven to be computationally valid and competitive against popular relational fuzzy clustering algorithms.