• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Emotion Recognition in Sound

P. 117-124.
Popova A. S., Alexandr G. Rassadin, Alexander A. Ponomarenko.

In this paper we consider the automatic emotions recognition problem, especially the case of digital audio signal processing. We consider and verify an straight forward approach in which the classification of a sound fragment is reduced to the problem of image recognition. The waveform and spectrogram are used as a visual representation of the image. The computational experiment was done based on Radvess open dataset including 8 different emotions: “neutral”, “calm”, “happy,” “sad,” “angry,” “scared”, “disgust”, “surprised”. Our best accuracy result 71% was produced by combination “melspectrogram + convolution neural network VGG-16”.