We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.
We present a new structural lemma for deterministic con- text free languages. From the first sight, it looks like a pumping lemma, because it is also based on iteration properties, but it has significant distinctions that makes it much easier to apply. The structural lemma is a combinatorial analogue of KC-DCF-Lemma (based on Kolmogorov complexity), presented by Li and Vit ́anyi in 1995 and corrected by Glier in 2003. The structural lemma allows not only to prove that a language is not a DCFL, but discloses the structure of DCFLs Myhill-Nerode classes.
We consider regular realizability problems, which consist in verifying whether the intersection of a regular language which is the problem input and a fixed language (filter) which is a parameter of the problem is nonempty. We study the algorithmic complexity of regular realizability problems for context-free filters. This characteristic is consistent with the rational dominance relation of CF languages. However, as we prove, it is more rough. We also give examples of both P-complete and NL-complete regular realizability problems for CF filters. Furthermore, we give an example of a subclass of CF languages for filters of which the regular realizability problems can have an intermediate complexity. These are languages with polynomially bounded rational indices.