### Book

## Dynamics of Information Systems: Mathematical Foundations

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

We consider the dependence of the growth arte on the elasticity of substitution within the framework of a model with the agents' mutual dependence. This model is interpreted as a network structure. the development is explined as the agents' valus increase in a dynamic system described by functions which display constant elasticity of substitution (CES). We investigate the cases of high and low complementarity of activities. In particular, we receive conditions allowing to identify the cases when the elasticity of substitution has the positive (negative) effect on growth rate under high (low) complementarity of activities. Additionally we analyse the influence of the individual agent's productivities on the growth rate. Finally we give a potential generalisation of the model allowing for different growth rates of the agents.

We consider a game equilibrium in a network in each node of which an economy is described by the simple two-period model of endogenous growth with production and knowledge externalities. Each node of the network obtains an externality produced by the sum of knowledge in neighbor nodes. Uniqueness of the inner equilibrium is proved. Three ways of behavior of each agent are distinguished: active, passive, hyperactive. Behavior of agents in dependence on received externalities is studied. It is shown that the equilibrium depends on the network structure. We study the role of passive agents; in particular, possibilities of connection of components of active agents through components of passive agents. A notion of type of node is introduced and classification of networks based on this notion is provided. It is shown that the inner equilibrium depends not on the size of network but on its structure in terms of the types of nodes, and in similar networks of different size agents of the same type behave in similar way.

This valuable source for graduate students and researchers provides a comprehensive introduction to current theories and applications in optimization methods and network models. Contributions to this book are focused on new efficient algorithms and rigorous mathematical theories, which can be used to optimize and analyze mathematical graph structures with massive size and high density induced by natural or artificial complex networks. Applications to social networks, power transmission grids, telecommunication networks, stock market networks, and human brain networks are presented.

Chapters in this book cover the following topics:

Linear max min fairness Heuristic approaches for high-quality solutions Efficient approaches for complex multi-criteria optimization problems Comparison of heuristic algorithms New heuristic iterative local search Power in network structures Clustering nodes in random graphs Power transmission grid structure Network decomposition problems Homogeneity hypothesis testing Network analysis of international migration Social networks with node attributes Testing hypothesis on degree distribution in the market graphs Machine learning applications to human brain network studies

This proceeding is a result of The 6th International Conference on Network Analysis held at the Higher School of Economics, Nizhny Novgorod in May 2016. The conference brought together scientists and engineers from industry, government, and academia to discuss the links between network analysis and a variety of fields.

The aim of the paper is to develop a methodological approach to conceptual modeling of performance management systems. For these purposes such systems are considered as means of information support of corporate governance and strategic management and include such components as analytical methods, management processes, information systems and personnel competences. As a result, a modeling approach based on functional blocks, modules and information flows is proposed, and a conceptual model of a generic performance management system is developed. The model consists of four aggregative functional blocks (strategic analysis and strategic choice, management by key performance indicators, corporate planning and budgeting, consolidated financial reporting) and may be considered as a reference model for different types of organizations.

Full papers (articles) of 2nd Stochastic Modeling Techniques and Data Analysis (SMTDA-2012) International Conference are represented in the proceedings. This conference took place from 5 June by 8 June 2012 in Chania, Crete, Greece.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.