Book
Differential and Difference Equations with Applications. ICDDEA 2019, Lisbon, Portugal, July 1–5
This edited volume gathers selected, peer-reviewed contributions presented at the fourth International Conference on Differential & Difference Equations Applications (ICDDEA), which was held in Lisbon, Portugal, in July 2019.
First organized in 2011, the ICDDEA conferences bring together mathematicians from various countries in order to promote cooperation in the field, with a particular focus on applications. The book includes studies on boundary value problems; Markov models; time scales; non-linear difference equations; multi-scale modeling; and myriad applications.
We study an explicit two-level in time and three-point symmetric in space finite-difference scheme for 1D barotropic and full gas dynamics systems of equations. The scheme is a linearization at a constant background solution (with an arbitrary velocity) of finite-difference schemes with general viscous regularization. We enlarge recently proved sufficient conditions (on the Courant-like number) for $L^2$-dissipativity in the Cauchy problem for the schemes by deriving new bounds for the commutator of matrices of viscous and convective terms. We deal with the case of a kinetic regularization in more detail and specify sufficient conditions in this case where the mentioned matrices are closely connected. Importantly, these new sufficient conditions rapidly tend to the known necessary ones as the Mach number grows. Also several forms of setting a regularization parameter are considered.

We consider a model quantum Hamiltonian of a charge in a resonance electromagnetic trap. Using the operator averaging method, we obtain an effective quantum operator that asymptotically describes the anharmonic part of the Hamiltonian. We show that the operator becomes a second-order difference operator in a specially chosen quantum action-angle representation. Using the discrete WKB method for this difference equation, we obtain the semiclassical WKB asymptotics of the spectrum and stationary states of the charge.
In a neighborhood of a singular point, we consider autonomous systems of ordinary differential equations such that the matrix of their linear part has two purely imaginary eigenvalues, while the other eigenvalues lie outside the imaginary axis. We study the reducibility of such systems to pseudonormal form. We prove that the problem of finitely smooth equivalence can be solved for such systems by using finite segments of the Taylor series of their right-hand sides.
Painlevé equations, holomorphic vector fields and normal forms, summability of WKB solutions, Gevrey order and summability of formal solutions for ordinary and partial differ- ential equations, • Stokes phenomena of formal solutions of non-linear PDEs, and the small divisors phenomenon, • summability of solutions of difference equations, • applications to integrable systems and mathematical physics.
By means of Power Geometry we obtained all asymptotic expansions of solutions to the equation P5 of the following five types: power, power-logarithmic, complicated, exotic and half-exotic for all values of 4 complex parameters of the equation. They form 16 and 30 families in the neighbourhood of singular points z = infty and z = 0 correspondingly. There exist 10 families in the neighbourhood of nonsingular point. Over 20 families are new.
In this work, the methods of power geometry are used to find asymptotic expansions of solutions to the fifth Painlevй equation as x 0 for all values of its four complex parameters. We obtain 30 families of expansions, of which 22 are obtained from published expansions of solutions to the sixth Painlevй equation. Among the other eight families, one was previously known and two can be obtained from the expansions of solutions to the third Painlevй equation. Three families of half-exotic expansions and two families of complicated expansions are new.
In this paper, in a neighborhood of a singular point, we consider autonomous systems of ordinary differential equations such that the matrix of their linear part has one zero eigenvalue, while the other eigenvalues lie outside the imaginary axis. We prove that the problem of finitely smooth equivalence can be solved for such systems by using finite segments of the Taylor series of their right-hand sides.
We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.
We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.
We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.
This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.