### Book

## Geometric Representation Theory and Gauge Theory

In the last 30 years a new pattern of interaction between mathematics and physics

emerged, in which the latter catalyzed the creation of new mathematical theories.

Most notable examples of this kind of interaction can be found in the theory of

moduli spaces. In algebraic geometry the theory of moduli spaces goes back at

least to Riemann, but they were first rigorously constructed by Mumford only in the

1960s. The theory has experienced an extraordinary development in recent decades,

finding an increasing number of connections with other fields of mathematics

and physics. In particular, moduli spaces of different objects (sheaves, instantons,

curves, stable maps, etc.) have been used to construct invariants (such as Donaldson,

Seiberg-Witten, Gromov-Witten, Donaldson-Thomas invariants) that solve longstanding,

difficult enumerative problems. These invariants are related to the partition

functions and expectation values of quantum field and string theories. In recent

years, developments in both fields have led to an unprecedented cross-fertilization

between geometry and physics.

These striking interactions between geometry and physics were the theme of the

CIME School Geometric Representation Theory and Gauge Theory. The School

took place at the Grand Hotel San Michele, Cetraro, Italy, in June, Monday 25

to Friday 29, 2018. The present volume is a collection of notes of the lectures

delivered at the school. It consists of three articles from Alexander Braverman and

Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively.

These are (somewhat informal) lecture notes for the CIME summer school “Geometric Representation Theory and Gauge Theory” in June 2018. In these notes we review the constructions and results of Braverman et al. (Adv Theor Math Phys 22(5):1017–1147, 2018; Adv Theor Math Phys 23(1):75–166, 2019; Adv Theor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d N = 4 quantum gauge theories (of cotangent type) is given, and also present a framework for studying some further mathematical structures (e.g. categories of line operators in the corresponding topologically twisted theories) related to these theories.

Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of *GL _{n}*. We construct the action of the Yangian of

*sl*in the cohomology of Laumon spaces by certain natural correspondences. We construct the action of the affine Yangian (two-parametric deformation of the universal enveloping algebra of the universal central extension of

_{n}*sl*[

_{n}*s*

^{±1},

*t*]) in the cohomology of the affine version of Laumon spaces. We compute the matrix coefficients of the generators of the affine Yangian in the fixed point basis of cohomology. This basis is an affine analogue of the Gelfand-Tsetlin basis. The affine analogue of the Gelfand-Tsetlin algebra surjects onto the equivariant cohomology rings of the affine Laumon spaces. The cohomology ring of the moduli space

*M*of torsion free sheaves on the plane, of rank

_{n,d}*n*and second Chern class

*d*, trivialized at infinity, is naturally embedded into the cohomology ring of certain affine Laumon space. It is the image of the center

*Z*of the Yangian of

*gl*naturally embedded into the affine Yangian. In particular, the first Chern class of the determinant line bundle on

_{n}*M*is the image of a noncommutative power sum in

_{n,d}*Z*.

In a previous paper the authors have attached to each Dynkin quiver an associative algebra. The definition is categorical and the algebra is used to construct desingularizations of arbitrary quiver Grassmannians. In the present paper we prove that this algebra is isomorphic to an algebra constructed by Hernandez-Leclerc defined combinatorially and used to describe certain graded Nakajima quiver varieties. This approach is used to get an explicit realization of the orbit closures of representations of Dynkin quivers as affine quotients.

In a previous paper the authors have attached to each Dynkin quiver an associative algebra. The definition is categorical and the algebra is used to construct desingularizations of arbitrary quiver Grassmannians. In the present paper we prove that this algebra is isomorphic to an algebra constructed by Hernandez-Leclerc defined combinatorially and used to describe certain graded Nakajima quiver varieties. This approach is used to get an explicit realization of the orbit closures of representations of Dynkin quivers as affine quotients.In a previous paper the authors have attached to each Dynkin quiver an associative algebra. The definition is categorical and the algebra is used to construct desingularizations of arbitrary quiver Grassmannians. In the present paper we prove that this algebra is isomorphic to an algebra constructed by Hernandez-Leclerc defined combinatorially and used to describe certain graded Nakajima quiver varieties. This approach is used to get an explicit realization of the orbit closures of representations of Dynkin quivers as affine quotients. - See more at: http://www.ams.org/journals/ert/2014-18-01/S1088-4165-2014-00449-7/home.html#sthash.TNXUywGF.dpuf
Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of *GL _{n}.* We calculate the equivariant cohomology rings of the Laumon moduli spaces in terms of Gelfand-Tsetlin subalgebra of

*U*(

*gl*), and formulate a conjectural answer for the small quantum cohomology rings in terms of certain commutative shift of argument subalgebras of

_{n}*U*(

*gl*).

_{n}This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

These are (somewhat informal) lecture notes for the CIME summer school “Geometric Representation Theory and Gauge Theory” in June 2018. In these notes we review the constructions and results of Braverman et al. (Adv Theor Math Phys 22(5):1017–1147, 2018; Adv Theor Math Phys 23(1):75–166, 2019; Adv Theor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d N = 4 quantum gauge theories (of cotangent type) is given, and also present a framework for studying some further mathematical structures (e.g. categories of line operators in the corresponding topologically twisted theories) related to these theories.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.