### Book

## Дискретная математика. Формально-логические системы и языки.

The textbook contains the basic information of formal logical systems. It is Boolean functions, Post’s theorem on functional completeness, the *k*-valued logic, derivatives of Boolean functions, axiomatic calculi for propositions, for predicates, for sequentions, for resolutions. Programming language Prolog and axiomatic programming language OBJ3 are introduced. Problems of monadic logic, of finite automata and of the represented by them languages, of temporal logic are considered. Many examples are shown. It is put in a basis of the book long-term experience of teaching by authors the discipline «Discrete mathematics» at the business informatics faculty, at the computer science faculty of National research university Higher school of economics, and at the automatics and computer technique faculty of National research university Moscow power engineering institute. The book is intended for the students of a bachelor degree, trained at the computer science faculties in the directions 09.03.01 Informatics and computational technique, 09.03.02 Informational systems and technologies, 09.03.03 Applied informatics, 09.03.04 Software Engineering, and also for IT experts and developers of software products.

9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings

Formal language theory has a deep connection with such areas as static code analysis, graph database querying, formal verifica- tion, and compressed data processing. Many application problems can be formulated in terms of languages intersection. The Bar-Hillel theo- rem states that context-free languages are closed under intersection with a regular set. This theorem has a constructive proof and thus provides a formal justification of correctness of the algorithms for applications mentioned above. Mechanization of the Bar-Hillel theorem, therefore, is both a fundamental result of formal language theory and a basis for the certified implementation of the algorithms for applications. In this work, we present the mechanized proof of the Bar-Hillel theorem in Coq.

We present a new structural lemma for deterministic con- text free languages. From the first sight, it looks like a pumping lemma, because it is also based on iteration properties, but it has significant distinctions that makes it much easier to apply. The structural lemma is a combinatorial analogue of KC-DCF-Lemma (based on Kolmogorov complexity), presented by Li and Vit ́anyi in 1995 and corrected by Glier in 2003. The structural lemma allows not only to prove that a language is not a DCFL, but discloses the structure of DCFLs Myhill-Nerode classes.

The Markov School is the school of mathematics (mostly mathematical logic) arisen in St.Petersburg in the 20th century. Historically, the Markov School has been largely connected with the Steklov Mathematical Institute in St. Petersburg. Today, many Markov School mathematicians have taken up positions in different countries; of course, we do not attempt to restrict this survey only to those who have stayed in St. Petersburg. However, all mathematicians whose work we describe studied in St. Petersburg and, at least for several years and often for decades, worked at the Steklov Mathematical Institute. In this paper, we primarily discuss what has happened over the last two decades, so a certain bias to computational complexity is to be expected.

We re-examine the problem of existential import by using classical predicate logic. Our problem is: How to distribute the existential import among the quantified propositions in order for all the relations of the logical square to be valid? After defining existential import and scrutinizing the available solutions, we distinguish between three possible cases: explicit import, implicit non-import, explicit negative import and formalize the propositions accordingly. Then, we examine the 16 combinations between the 8 propositions having the first two kinds of import, the third one being trivial and rule out the squares where at least one relation does not hold. This leads to the following results: (1) three squares are valid when the domain is non-empty; (2) one of them is valid even in the empty domain: the square can thus be saved in arbitrary domains and (3) the aforementioned eight propositions give rise to a cube, which contains two more (non-classical) valid squares and several hexagons. A classical solution to the problem of existential import is thus possible, without resorting to deviant systems and merely relying upon the symbolism of First-order Logic (FOL). Aristotle's system appears then as a fragment of a broader system which can be developed by using FOL.

The following paper considers the debate on disciplinary boundaries of logic in German philosophy of the early 19th century. It is supposed to distinguish four competing views on understanding of the logical knowledge. The analysis of the controversy enables to adjust the location of the Hegelian idea of the "Science of Logic," project and to clarify the historical context of the emergence of formal logic as a discipline.

This article deals with the problem of translations. It covers the history of translation in linguistics and analyzes peculiarities and role of translation in logic. Moreover, the article contains typical examples of embedding operations in terms of dierent logical theories.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.

Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.

Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain simple groups of type A, and P⊆G be a parabolic subgroup. Extending the results of Popov [7], we enumerate all triples (G, P, n) such that (a) there exists an open G-orbit on the multiple flag variety G/P × G/P × . . . × G/P (n factors), (b) the number of G-orbits on the multiple flag variety is finite.

I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables