### Book

## Алгебра, 9 класс. Часть 1. Учебник

The article analyses the up-to-date principles of materials design in English language teaching. It is described how each principle comes to work in a new course for university researchers and PhD students. The conclusion is drawn that current methodological approaches have to be taken into account in order to create a course book able to meet the requirements of the new educational paradigm.

For every algebraically closed field k of characteristic different from 2, we prove the following: (1) Finite-dimensional (not necessarily associative) k-algebras of general type of a fixed dimension, considered up to isomorphism, are parametrized by the values of a tuple of algebraically independent (over k) rational functions of the structure constants. (2) There exists an “algebraic normal form” to which the set of structure constants of every such algebra can be uniquely transformed by means of passing to its new basis—namely, there are two finite systems of nonconstant polynomials on the space of structure constants, {f_i}_i∈I and {b_j}_j∈J , such that the ideal generated by the set {f_i}_i∈I is prime and, for every tuple c of structure constants satisfying the property b_j(c) = 0 for all j ∈ J, there exists a unique new basis of this algebra in which the tuple c' of its structure constants satisfies the property f_i(c') = 0 for all i ∈ I.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

In this, the third paper of the series, we construct a large family of representations of the quantum toroidal gl(1)-algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal characters. As an application We obtain a Gelfand-Zetlin-type basis for a class of irreducible lowest weight gl(infinity)-modules.

The authors analyze some new principles for compiling a bibliographic list of publications of sources and research literature in the newest textbook on source study: selection of types of publications for the list, the structure of various sections of the list, the volume of bibliographic records.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.